cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298803 Growth series for group with presentation < S, T : S^3 = T^3 = (S*T)^4 = 1 >.

Original entry on oeis.org

1, 4, 8, 16, 30, 50, 88, 150, 260, 448, 768, 1328, 2284, 3930, 6776, 11662, 20082, 34592, 59560, 102570, 176642, 304180, 523830, 902084, 1553452, 2675184, 4606892, 7933444, 13662066, 23527220, 40515838, 69771678, 120152672, 206912968, 356321478, 613615442
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Feb 04 2018

Keywords

Crossrefs

Programs

  • Magma
    R := RationalFunctionField(Integers());
    PSR25 := PowerSeriesRing(Integers():Precision := 25);
    FG := FreeGroup(2);
    TG := quo;
    f, A :=IsAutomaticGroup(TG);
    gf := GrowthFunction(A);
    R!gf;
    Coefficients(PSR25!gf);
    
  • Mathematica
    LinearRecurrence[{0,1,3,1,0,-1},{1,4,8,16,30,50,88,150},40] (* Harvey P. Dale, May 03 2019 *)
  • PARI
    Vec((1 + 4*x + 7*x^2 + 9*x^3 + 9*x^4 + 6*x^5 + 3*x^6 - 2*x^7) / ((1 + x + x^2)*(1 - x - x^2 - x^3 + x^4)) + O(x^40)) \\ Colin Barker, Feb 04 2018

Formula

G.f.: (1 + 4*x + 7*x^2 + 9*x^3 + 9*x^4 + 6*x^5 + 3*x^6 - 2*x^7) / ((1 + x + x^2)*(1 - x - x^2 - x^3 + x^4)). [Corrected by Colin Barker, Feb 04 2018]
a(n) = a(n-2) + 3*a(n-3) + a(n-4) - a(n-6) for n>7. - Colin Barker, Feb 04 2018