cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298805 Growth series for group with presentation < S, T : S^2 = T^3 = (S*T)^7 = 1 >.

Original entry on oeis.org

1, 3, 4, 6, 8, 12, 16, 22, 24, 34, 40, 56, 62, 83, 98, 133, 152, 202, 236, 322, 368, 496, 570, 776, 892, 1202, 1384, 1871, 2158, 2915, 3352, 4534, 5218, 7060, 8120, 10976, 12636, 17084, 19664, 26580, 30592, 41367, 47604, 64365, 74072, 100152, 115264, 155836, 179352, 242488, 279076, 377324, 434246, 587126
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Feb 04 2018

Keywords

Crossrefs

Programs

  • Magma
    // To get the growth function for the group with presentation
    // < S, T | S^a = T^b = (S*I)^c = 1 >
    a:=2; b:=3; c:=7;
    R := RationalFunctionField(Integers());
    PSR := PowerSeriesRing(Integers():Precision := 100);
    FG := FreeGroup(2);
    TG := quo;
    f, A :=IsAutomaticGroup(TG);
    gf := GrowthFunction(A);
    R!gf;
    Coefficients(PSR!gf);
    
  • Mathematica
    LinearRecurrence[{-1,0,0,1,2,1,0,1,0,1,2,1,0,0,-1,-1},{1,3,4,6,8,12,16,22,24,34,40,56,62,83,98,133,152,202,236},60] (* Harvey P. Dale, Jun 15 2021 *)
  • PARI
    Vec((1 + 4*x + 7*x^2 + 10*x^3 + 13*x^4 + 15*x^5 + 17*x^6 + 21*x^7 + 21*x^8 + 21*x^9 + 21*x^10 + 19*x^11 + 15*x^12 + 12*x^13 + 9*x^14 + 6*x^15 + 3*x^16 - 2*x^17 - 2*x^18) / ((1 + x + x^2 + x^3 + x^4)*(1 - x^2 - x^4 + x^6 - x^8 - x^10 + x^12)) + O(x^60)) \\ Colin Barker, Feb 06 2018

Formula

G.f.: (-2*x^18 - 2*x^17 + 3*x^16 + 6*x^15 + 9*x^14 + 12*x^13 + 15*x^12 + 19*x^11 + 21*x^10 + 21*x^9 + 21*x^8 + 21*x^7 + 17*x^6 + 15*x^5 + 13*x^4 + 10*x^3 + 7*x^2 + 4*x + 1)/(x^16 + x^15 - x^12 - 2*x^11 - x^10 - x^8 - x^6 - 2*x^5 - x^4 + x + 1).
The denominator can be factored: G.f. also = -(2*x^18 + 2*x^17 - 3*x^16 - 6*x^15 - 9*x^14 - 12*x^13 - 15*x^12 - 19*x^11 - 21*x^10 - 21*x^9 - 21*x^8 - 21*x^7 - 17*x^6 - 15*x^5 - 13*x^4 - 10*x^3 - 7*x^2 - 4*x - 1) / ((x^4 + x^3 + x^2 + x + 1) * (x^12 - x^10 - x^8 + x^6 - x^4 - x^2 + 1)).
a(n) = -a(n-1) + a(n-4) + 2*a(n-5) + a(n-6) + a(n-8) + a(n-10) + 2*a(n-11) + a(n-12) - a(n-15) - a(n-16) for n>18. - Colin Barker, Feb 06 2018