A298826 a(n) = A298825(n)/n.
1, 0, 0, 1, 0, 0, 0, 2, -1, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, -2, 0, 0, 0, 0, 4, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -2
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..2500
- Mats Granvik, Arithmetic properties of a sum related to the first Hardy-Littlewood conjecture.
- Terence Tao, Correlations of the von Mangoldt and higher divisor functions I. Long shift ranges. See second formula.
Programs
-
Mathematica
nn = 90; A = Table[Boole[Mod[n, k] == 0], {n, nn}, {k, nn}]; B = Table[If[Mod[k, n] == 0, MoebiusMu[n]*n, 0], {n, nn}, {k, nn}]; T = (A.B); TwinMangoldt = Table[a = T[[All, kk]]; F1 = Table[If[Mod[n, k] == 0, a[[n/k]], 0], {n, nn}, {k, nn}]; b = T[[All, kk + 2]]; F2 = Table[ If[Mod[n, k] == 0, b[[n/k]], 0], {n, nn}, {k, nn}]; (F1.F2)[[All, 1]], {kk, nn - 2}]; TT = Transpose[TwinMangoldt]; Table[Sum[TT[[n, k]], {k, n}]/n, {n, nn - 2}] (* This faster alternate conjectured program agrees with Antti Karttunen's precomputed list of numbers. *) nn = 108; b = 4*Select[Range[1, nn, 2], SquareFreeQ]; bb = Table[DivisorSigma[0, n]*(MoebiusMu[n] + Sum[If[b[[j]] == n, LiouvilleLambda[n]*2/3, 0], {j, 1, Length[b]}]), {n, 1, nn}]; cc = Table[Sum[If[Mod[n, k] == 0, bb[[n/k]]*DivisorSigma[0, k], 0], {k, 1, n}], {n, 1, nn}] (* Mats Granvik, Mar 17 2019 *) (* Dirichlet generating function *) s=7; nn=2500; N[Zeta[s]^2*Product[(1 - 2 Prime[j]^(-s)), {j, 1, nn}]*(1 + Sum[1/2/2^(n*(s - 1)), {n, 2, nn}]), 40] (* Mats Granvik, Apr 06 2019 *)
-
PARI
up_to = 256; DirConv(ma,h) = { my(u = matsize(ma)[1], md = matrix(u,u)); for(n=1,u-h,for(k=1,u,md[n,k] = sumdiv(k,d,ma[n,d]*ma[n+h,k/d]))); (md); }; A298826list(up_to) = { my(h=2, matA = matrix(up_to+h,up_to+h,n,k,!(n%k)), matB = matrix(up_to+h,up_to+h,n,k,(!(k%n))*moebius(n)*n), matT = matA*matB, matD = DirConv(matT,2)); vector(up_to,i,(1/i)*sum(j=1,i,matD[j,i])); }; v298826 = A298826list(up_to); A298826(n) = v298826[n]; \\ Antti Karttunen, Sep 30 2018
Formula
Conjecture: a(n) = (-1)^(n+1) * Sum_{d|n} A076479(d). - Daniel Suteu, Apr 04 2019
From Mats Granvik, Apr 06 2019: (Start)
The Dirichlet generating function, after Daniel Suteu above and Álvar Ibeas in A076479, appears to be: Sum_{n>=1} a(n)/n^s = zeta(s)^2*(Product_{j>=1} (1 - 2*prime(j)^(-s)))*(1 + Sum_{n>=2} ((1/2)/2^(n*(s - 1)))).
Conjectured formula: Let b(n) = 4*A056911(n) and c(n) = A000005(n)*A008683(n) + Sum_{j=1..length(b(1..N))} [b(j)=n]*A008836(n)*2/3) then a(n) = Sum_{k=1..n}[k|n] c(n/k)*A000005(k). (End)
Conjecture: a(n) = (-1)^(n+1) * Sum_{d|n} mu(d)*tau(d)*tau(n/d). - Ridouane Oudra, Nov 19 2019
The conjectured Dirichlet generating function simplifies to: Sum_{n>=1} a(n)/n^s = zeta(s)^2*(Product_{j>=1} (1 - 2*prime(j)^(-s)))*(1 + 2^(1 - s)/(2^s - 2)). - Steven Foster Clark, Sep 12 2022
Conjecture: abs(a(n)) = A361430(n). - Vaclav Kotesovec, Mar 12 2023
Conjecture: a(n) is multiplicative with a(p^e) = (-1)^p * (e-1) for prime p and e > 0. That conforms to the conjectured Dirichlet generating function (compare Steven Foster Clark, Sep 12 2022). - Werner Schulte, Jun 09 2025
Extensions
More terms from Antti Karttunen, Sep 30 2018
Comments