cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A298868 Solution (a(n)) of the system of 3 complementary equations in Comments.

Original entry on oeis.org

1, 4, 6, 8, 11, 14, 15, 17, 19, 21, 24, 26, 27, 29, 32, 33, 34, 37, 41, 42, 45, 46, 48, 52, 53, 54, 57, 58, 59, 61, 64, 67, 70, 72, 73, 74, 77, 79, 82, 83, 87, 90, 92, 93, 94, 96, 98, 100, 101, 104, 105, 107, 111, 113, 115, 118, 119, 120, 122, 125, 126, 127
Offset: 0

Views

Author

Clark Kimberling, Apr 17 2018

Keywords

Comments

Define sequences a(n), b(n), c(n) recursively, starting with a(0) = 1, b(0) = 2:
a(n) = least new;
b(n) = least new k >= a(n) + n;
c(n) = a(n) + b(n);
where "least new k" means the least positive integer not yet placed.
***
The sequences a,b,c partition the positive integers. Let x = be the greatest solution of 1/x + 1/(x+1) + 1/(2x+1) = 1. Then
x = 1/3 + (2/3)*sqrt(7)*cos((1/3)*arctan((3*sqrt(111))/67));
x = 2.07816258732933084676..., and a(n)/n -> x, b(n)/n -> x+1, and c(n)/n -> 2x+1.

Examples

			n:   0    1    2    3    4    5    6    7    8    9
a:   1    4    6    8   11   14   15   17   19   21
b:   2    5    7   10   12   16   20   22   25   28
c:   3    9   13   18   23   30   35   39   44   49
		

Crossrefs

Programs

  • Mathematica
    z = 400;
    mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
    a = {1}; b = {2}; c = {}; AppendTo[c, Last[a] + Last[b]]; n = 0;
    Do[{n++, AppendTo[a, mex[Flatten[{a, b, c}], 1]],
       AppendTo[b, mex[Flatten[{a, b, c}], a[[n]] + n]],
       AppendTo[c, Last[a] + Last[b]]}, {z}];
    Take[a, 100] (* A298868 *)
    Take[b, 100] (* A298869 *)
    Take[c, 100] (* A298870 *)
    (* Peter J. C. Moses, Apr 08 2018 *)

A298869 Solution (b(n)) of the system of 3 complementary equations in Comments.

Original entry on oeis.org

2, 5, 7, 10, 12, 16, 20, 22, 25, 28, 31, 36, 38, 40, 43, 47, 50, 51, 56, 60, 63, 66, 68, 71, 76, 78, 81, 85, 86, 89, 91, 95, 99, 103, 106, 109, 110, 114, 117, 121, 124, 128, 133, 135, 137, 139, 142, 146, 148, 151, 154, 156, 159, 164, 167, 170, 174, 176, 178
Offset: 0

Views

Author

Clark Kimberling, Apr 17 2018

Keywords

Comments

Define sequences a(n), b(n), c(n) recursively, starting with a(0) = 1, b(0) = 2:
a(n) = least new;
b(n) = least new k >= a(n) + n;
c(n) = a(n) + b(n);
where "least new k" means the least positive integer not yet placed.
***
The sequences a,b,c partition the positive integers. Let x = be the greatest solution of 1/x + 1/(x+1) + 1/(2x+1) = 1. Then
x = 1/3 + (2/3)*sqrt(7)*cos((1/3)*arctan((3*sqrt(111))/67));
x = 2.07816258732933084676..., and a(n)/n - > x, b(n)/n -> x+1, and c(n)/n -> 2x+1.

Examples

			n:   0    1    2    3    4    5    6    7    8    9
a:   1    4    6    8   11   14   15   17   19   21
b:   2    5    7   10   12   16   20   22   25   28
c:   3    9   13   18   23   30   35   39   44   49
		

Crossrefs

Programs

  • Mathematica
    z = 400;
    mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
    a = {1}; b = {2}; c = {}; AppendTo[c, Last[a] + Last[b]]; n = 0;
    Do[{n++, AppendTo[a, mex[Flatten[{a, b, c}], 1]],
       AppendTo[b, mex[Flatten[{a, b, c}], a[[n]] + n]],
       AppendTo[c, Last[a] + Last[b]]}, {z}];
    Take[a, 100] (* A298868 *)
    Take[b, 100] (* A298869 *)
    Take[c, 100] (* A298870 *)
    (* Peter J. C. Moses, Apr 08 2018 *)
Showing 1-2 of 2 results.