cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298883 Determinant of n X n matrix whose elements are m(i,j) = prime(i)^j.

Original entry on oeis.org

1, 2, 6, 180, 50400, 958003200, 131514679296000, 1352181326649753600000, 112703642894318944282214400000, 903025586371469323704949549301760000000, 2012769637740033870687308804001121075357286400000000
Offset: 0

Views

Author

Andres Cicuttin, Jan 28 2018

Keywords

Comments

Traces of these matrices are A087480.

Examples

			For n=1:
          |2| = 2, then a(1) = 2.
For n=2:
          |2  4| = 6, then a(2) = 6.
          |3  9|
For n=3:
          |2  4   8| = 180, then a(3) = 180.
          |3  9  27|
          |5 25 125|
		

Crossrefs

Programs

  • Maple
    with(LinearAlgebra):
    a:= n-> Determinant(Matrix(n, (i,j)-> ithprime(i)^j)):
    seq(a(n), n=0..12);  # Alois P. Heinz, Jan 28 2018
    # Alternative:
    f:= proc(n) local P;
    P:= [seq(ithprime(i),i=1..n)];
    convert(P,`*`)*mul(mul(P[j]-P[i],j=i+1..n),i=1..n-1)
    end proc:
    map(f, [$0..20]); # Robert Israel, Jan 29 2018
  • Mathematica
    a[n_]:=Table[Prime[i]^j,{i,1,n},{j,1,n}];
    Table[Det[a[n]],{n,1,10}]
  • PARI
    a(n) = matdet(matrix(n, n, i, j, prime(i)^j)); \\ Michel Marcus, Jan 28 2018

Formula

a(n) = Product_{1<=i<=n} prime(i) * Product_{1<=iRobert Israel, Jan 29 2018