A298947 Number of integer partitions y of n such that exactly one permutation of y is a Lyndon word.
1, 1, 2, 3, 6, 7, 11, 12, 15, 19, 22, 22, 29, 32, 32, 38, 42, 44, 49, 51, 54, 63, 63, 64, 71, 79, 76, 84, 87, 90, 96, 101, 101, 113, 108, 115, 122, 131, 125, 134, 138, 144, 147, 155, 150, 169, 163, 168, 173, 185, 180, 194, 191, 200, 198, 211, 209, 227, 218, 224, 231, 246
Offset: 1
Keywords
Examples
The a(6) = 7 partitions are (6), (51), (42), (411), (3111), (2211), (21111). This list does not include (321) because there are two possible permutations that are Lyndon words, namely (123) and (132). The list does not include (33), (222), or (111111) because no permutation of these is a Lyndon word.
Crossrefs
Programs
-
Maple
with(combinat): with(numtheory): g:= l-> (n-> `if`(n=0, 1, add(mobius(j)*multinomial(n/j, (l/j)[]), j=divisors(igcd(l[])))/n))(add(i, i=l)): b:= (n, i, l)-> `if`(n=0 or i=1, `if`(g([l[], n])=1, 1, 0), add(b(n-i*j, i-1, [l[], j]), j=0..n/i)): a:= n-> b(n$2, []): seq(a(n), n=1..30); # Alois P. Heinz, Feb 09 2018
-
Mathematica
LyndonQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]&&Array[RotateRight[q,#]&,Length[q],1,UnsameQ]; Table[Length[Select[IntegerPartitions[n],Length[Select[Permutations[#],LyndonQ]]===1&]],{n,20}] (* Second program: *) multinomial[n_, k_List] := n!/Times @@ (k!); g[l_List] := With[{n = Total[l]}, If[n == 0, 1, Sum[MoebiusMu[j]*multinomial[n/j, l/j], {j, Divisors[GCD @@ l]}]/n]]; b[n_, i_, l_List] := If[n == 0 || i == 1, If[g[Append[l, n]] == 1, 1, 0], Sum[b[n - i*j, i - 1, Append[l, j]], {j, 0, n/i}]]; a[n_] := b[n, n, {}]; Array[a, 30] (* Jean-François Alcover, May 20 2021, after Alois P. Heinz *)
Extensions
a(23)-a(62) from Alois P. Heinz, Feb 09 2018