cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A298985 a(n) = [x^n] Product_{k>=1} 1/(1 - n*x^k)^k.

Original entry on oeis.org

1, 1, 8, 54, 496, 5400, 73728, 1204322, 23167808, 512093178, 12781430600, 355128859129, 10863077554224, 362572265689777, 13107541496092960, 510105773344747725, 21258690342206888192, 944467894258279964254, 44555341678790400325512, 2224158766859058600584834, 117123916650423288611260400
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 31 2018

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, k) option remember;   `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(i+j-1, j)*b(n-i*j, i-1, k)*k^j, j=0..n/i)))
        end:
    a:= n-> b(n$3):
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 23 2018
  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - n x^k)^k, {k, 1, n}], {x, 0, n}], {n, 0, 20}]

Formula

a(n) ~ n^n. - Vaclav Kotesovec, Feb 02 2018

A298988 a(n) = [x^n] Product_{k>=1} 1/(1 + n*x^k)^k.

Original entry on oeis.org

1, -1, 0, -18, 208, -2400, 36504, -663754, 13808320, -324176418, 8487126400, -245122390601, 7741417124880, -265402847130421, 9816338228638872, -389618889514254225, 16518399076342421248, -745025763154442071130, 35619835529954597786208, -1799459812004380374518790, 95780758238408017088795600
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 31 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 + n x^k)^k, {k, 1, n}], {x, 0, n}], {n, 0, 20}]

Formula

a(n) ~ (-1)^n * n^n * (1 - 2/n + 6/n^2 - 14/n^3 + 33/n^4 - 70/n^5 + 149/n^6 - 298/n^7 + 591/n^8 - 1132/n^9 + 2139/n^10 + ...), for coefficients, see A005380. - Vaclav Kotesovec, Aug 21 2018

A298986 a(n) = [x^n] Product_{k>=1} (1 - n*x^k)^k.

Original entry on oeis.org

1, -1, -4, 9, 48, 100, -756, -3479, -1600, 24462, 225900, 364573, -643536, -9251736, -36989316, -32397975, 165039872, 1725828525, 5338814652, 8082713829, -26321848400, -233434232766, -811526778964, -1731126953532, 1151302859712, 23632432765000, 113461901639788, 287935019845749
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 31 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1 - n x^k)^k, {k, 1, n}], {x, 0, n}], {n, 0, 27}]

A300412 a(n) = [x^n] Product_{k>=1} ((1 + n*x^k)/(1 - n*x^k))^k.

Original entry on oeis.org

1, 2, 16, 144, 1376, 15800, 210816, 3333372, 61688448, 1318588146, 32004369200, 869282342632, 26099925704928, 857736429098848, 30605729417479104, 1177841009504482200, 48614265201514729984, 2141639401723095243324, 100282931820560447963568, 4973060138191518242569120
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 05 2018

Keywords

Examples

			The table of coefficients of x^k in expansion of Product_{k>=1} ((1 + n*x^k)/(1 - n*x^k))^k begins:
n = 0: (1),  0,   0,    0,     0,       0,  ...
n = 1:  1,  (2),  6,   16,    38,      88,  ...
n = 2:  1,   4, (16),  60,   192,     596,  ...
n = 3:  1,   6,  30, (144),  582,    2280,  ...
n = 4:  1,   8,  48,  280, (1376),   6568,  ...
n = 5:  1,  10,  70,  480,  2790,  (15800), ...
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1 + n x^k)/(1 - n x^k))^k, {k, 1, n}], {x, 0, n}], {n, 0, 19}]

Formula

a(n) ~ 2 * n^n * (1 + 4/n + 14/n^2 + 44/n^3 + 124/n^4 + 328/n^5 + 824/n^6 + 1980/n^7 + 4590/n^8 + 10320/n^9 + 22584/n^10 + ...), for coefficients see A261451. - Vaclav Kotesovec, Mar 05 2018
Showing 1-4 of 4 results.