cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299026 Number of compositions of n whose standard factorization into Lyndon words has all weakly increasing factors.

Original entry on oeis.org

1, 2, 4, 8, 16, 31, 59, 111, 205, 378, 685, 1238, 2213, 3940, 6955, 12221, 21333, 37074, 64073, 110267, 188877, 322244, 547522, 926903, 1563370, 2628008, 4402927, 7353656, 12244434, 20329271, 33657560, 55574996, 91525882, 150356718, 246403694, 402861907
Offset: 1

Views

Author

Gus Wiseman, Feb 01 2018

Keywords

Examples

			The 2^6 - a(7) = 5 compositions of 7 whose Lyndon prime factors are not all weakly increasing: (11212), (1132), (1213), (1321), (142).
		

Crossrefs

Programs

  • Mathematica
    nn=50;
    ser=Product[1/(1-x^n)^(PartitionsP[n]-DivisorSigma[0,n]+1),{n,nn}];
    Table[SeriesCoefficient[ser,{x,0,n}],{n,nn}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={EulerT(vector(n, n, numbpart(n) - numdiv(n) + 1))} \\ Andrew Howroyd, Dec 01 2018

Formula

Euler transform of A167934.