A299026 Number of compositions of n whose standard factorization into Lyndon words has all weakly increasing factors.
1, 2, 4, 8, 16, 31, 59, 111, 205, 378, 685, 1238, 2213, 3940, 6955, 12221, 21333, 37074, 64073, 110267, 188877, 322244, 547522, 926903, 1563370, 2628008, 4402927, 7353656, 12244434, 20329271, 33657560, 55574996, 91525882, 150356718, 246403694, 402861907
Offset: 1
Keywords
Examples
The 2^6 - a(7) = 5 compositions of 7 whose Lyndon prime factors are not all weakly increasing: (11212), (1132), (1213), (1321), (142).
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
nn=50; ser=Product[1/(1-x^n)^(PartitionsP[n]-DivisorSigma[0,n]+1),{n,nn}]; Table[SeriesCoefficient[ser,{x,0,n}],{n,nn}]
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} seq(n)={EulerT(vector(n, n, numbpart(n) - numdiv(n) + 1))} \\ Andrew Howroyd, Dec 01 2018
Formula
Euler transform of A167934.