cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A321684 Independent domination number of the n X n grid graph.

Original entry on oeis.org

0, 1, 2, 3, 4, 7, 10, 12, 16, 21, 24, 30, 35, 40, 47, 53, 60, 68, 76, 84, 92, 101, 111, 121, 131, 141, 152, 164, 176, 188, 200, 213, 227, 241, 255, 269, 284, 300, 316, 332, 348, 365, 383, 401, 419, 437, 456, 476, 496, 516, 536, 557, 579, 601, 623, 645, 668
Offset: 0

Views

Author

Andrey Zabolotskiy, Jan 14 2019

Keywords

Crossrefs

Programs

  • Maple
    ogf := (-41*x^6 + 47*x^5 - x^3 - x^2 + 41*x - 47)/((x - 1)^3*(x^4 + x^3 + x^2 + x + 1)): ser := series(ogf, x, 44):
    (0,1,2,3,4,7,10,12,16,21,24,30,35,40), seq(coeff(ser, x, n), n=0..42); # Peter Luschny, Jan 14 2019
  • PARI
    concat(0, Vec(x*(1 + 2*x^4 - x^5 - x^6 + 2*x^7 + x^8 - 4*x^9 + 3*x^10 - 2*x^12 + x^13 + x^14 - 2*x^15 + 2*x^16 - 2*x^18 + x^19) / ((1 - x)^3*(1 + x + x^2 + x^3 + x^4)) + O(x^40))) \\ Colin Barker, Jan 14 2019

Formula

For n >= 14, a(n) = floor((n+2)^2 / 5 - 4).
a(n) = A104519(n+2), the domination number of the n X n grid graph, for all n except for n = 9, 11.
From Colin Barker, Jan 14 2019: (Start)
G.f.: x*(1 + 2*x^4 - x^5 - x^6 + 2*x^7 + x^8 - 4*x^9 + 3*x^10 - 2*x^12 + x^13 + x^14 - 2*x^15 + 2*x^16 - 2*x^18 + x^19) / ((1 - x)^3*(1 + x + x^2 + x^3 + x^4)).
a(n) = 2*a(n-1) - a(n-2) + a(n-5) - 2*a(n-6) + a(n-7) for n > 20.
(End)

A342576 Independent domination number for knight graph on an n X n board.

Original entry on oeis.org

1, 4, 4, 4, 5, 8, 13, 14, 14, 16, 22, 24, 29, 33, 36, 40, 47, 52, 58, 63, 68
Offset: 1

Views

Author

Andrey Zabolotskiy, Mar 15 2021

Keywords

References

  • Sandra M. Hedetniemi, Stephen T. Hedetniemi, Robert Reynolds, Combinatorial Problems on Chessboards: II, in: Domination in Graphs - Advanced Topics, Marcel Dekker, 1998. See p. 141.

Crossrefs

Programs

  • Maple
    f:= proc(N)
      local verts,Rverts,edg,cons,i,j,e;
      verts:= [seq(seq([i,j],i=1..N),j=1..N)]:
      for i from 1 to N^2 do Rverts[op(verts[i])]:= i od:
      edg:= {seq(seq({Rverts[i,j],Rverts[i+1,j+2]},i=1..N-1),j=1..N-2),
           seq(seq({Rverts[i,j],Rverts[i+2,j+1]},i=1..N-2),j=1..N-1),
           seq(seq({Rverts[i,j],Rverts[i+1,j-2]},i=1..N-1),j=3..N),
           seq(seq({Rverts[i,j],Rverts[i+2,j-1]},i=1..N-2),j=2..N)}:
      cons:= {seq(x[e[1]]+x[e[2]]<=1, e=edg),
        seq(x[i]+add(`if`(member({i,j},edg),x[j],0),j=1..N^2)>=1, i=1..N^2)}:
      Optimization:-Minimize(add(x[i],i=1..N^2),cons,assume=binary)[1]
    end proc:
    map(f, [$1..13]); # Robert Israel, Mar 17 2021

Extensions

a(11) to a(14) from Robert Israel, Mar 17 2021
a(15)-a(18) from Eric W. Weisstein, Aug 01 2023
a(19) from Eric W. Weisstein, Jan 14 2024
a(20)-a(21) from Andy Huchala, Mar 10 2024
Showing 1-2 of 2 results.