A299032 Number of ordered ways of writing n-th triangular number as a sum of n squares of positive integers.
1, 1, 0, 3, 6, 0, 12, 106, 420, 2718, 18240, 120879, 694320, 5430438, 40668264, 300401818, 2369504386, 19928714475, 174151735920, 1543284732218, 14224347438876, 135649243229688, 1331658133954940, 13369350846412794, 138122850643702056, 1462610254141337590
Offset: 0
Keywords
Examples
a(4) = 6 because fourth triangular number is 10 and we have [4, 4, 1, 1], [4, 1, 4, 1], [4, 1, 1, 4], [1, 4, 4, 1], [1, 4, 1, 4] and [1, 1, 4, 4].
Links
Crossrefs
Programs
-
Maple
b:= proc(n, t) option remember; local i; if n=0 then `if`(t=0, 1, 0) elif t<1 then 0 else 0; for i while i^2<=n do %+b(n-i^2, t-1) od; % fi end: a:= n-> b(n*(n+1)/2, n): seq(a(n), n=0..25); # Alois P. Heinz, Feb 05 2018
-
Mathematica
Table[SeriesCoefficient[(-1 + EllipticTheta[3, 0, x])^n/2^n, {x, 0, n (n + 1)/2}], {n, 0, 25}]
Formula
a(n) = [x^(n*(n+1)/2)] (Sum_{k>=1} x^(k^2))^n.