cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299053 Minimum value of the cyclic autocorrelation of first n primes.

Original entry on oeis.org

4, 12, 31, 62, 133, 224, 377, 558, 865, 1304, 1805, 2462, 3337, 4280, 5389, 6726, 8449, 10264, 12663, 15294, 18061, 21200, 24961, 29166, 34173, 39508, 45017, 50870, 57141, 63788, 72299, 81234, 91365, 101732, 113327, 125166, 138355, 152348, 167179, 182862
Offset: 1

Views

Author

Andres Cicuttin, Feb 01 2018

Keywords

Comments

Maximum values of the cyclic autocorrelation of first n primes are in A024450.
If we use this definition with integers instead of primes it is obtained A088003.

Examples

			For n = 4 the four possible cyclic autocorrelations of first four primes are:
(2,3,5,7).(2,3,5,7) = 2*2 + 3*3 + 5*5 + 7*7 = 4 + 9 + 25 + 49 = 87,
(2,3,5,7).(7,2,3,5) = 2*7 + 3*2 + 5*3 + 7*5 = 14 + 6 + 15 + 35 = 70,
(2,3,5,7).(5,7,2,3) = 2*5 + 3*7 + 5*2 + 7*3 = 10 + 21 + 10 + 21 = 62,
(2,3,5,7).(3,5,7,2) = 2*3 + 3*5 + 5*7 + 7*2 = 6 + 15 + 35 + 14 = 70,
then a(4)=62 because 62 is the minimum among the four values.
		

Crossrefs

Programs

  • Maple
    a:= n-> min(seq(add(ithprime(i)*ithprime(irem(i+k, n)+1), i=1..n), k=1..n)):
    seq(a(n), n=1..40);  # Alois P. Heinz, Feb 06 2018
  • Mathematica
    p[n_]:=Prime[Range[n]];
    Table[Table[p[n].RotateRight[p[n],j],{j,0,n-1}]//Min,{n,1,36}]
  • PARI
    a(n) = vecmin(vector(n, k, sum(i=1, n, prime(i)*prime(1+(i+k)%n)))); \\ Michel Marcus, Feb 07 2018

Formula

a(n) = Min_{k=1..n} Sum_{i=1..n} prime(i)*prime(1 + (i+k) mod n).