cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299072 Sequence is an irregular triangle read by rows with zeros removed where T(n,k) is the number of compositions of n whose standard factorization into Lyndon words has k distinct factors.

Original entry on oeis.org

1, 2, 3, 1, 5, 3, 7, 9, 13, 17, 2, 19, 39, 6, 35, 72, 21, 59, 141, 55, 1, 107, 266, 132, 7, 187, 511, 300, 26, 351, 952, 660, 85, 631, 1827, 1395, 240, 3, 1181, 3459, 2901, 636, 15, 2191, 6595, 5977, 1554, 67, 4115, 12604, 12123, 3698, 228, 7711, 24173, 24504
Offset: 1

Views

Author

Gus Wiseman, Feb 01 2018

Keywords

Comments

Row sums are 2^(n-1). First column is A008965. A regular version is A299070.

Examples

			Triangle begins:
    1
    2
    3    1
    5    3
    7    9
   13   17    2
   19   39    6
   35   72   21
   59  141   55    1
  107  266  132    7
  187  511  300   26
		

Crossrefs

Programs

  • Mathematica
    LyndonQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]&&Array[RotateRight[q,#]&,Length[q],1,UnsameQ];
    qit[q_]:=If[#===Length[q],{q},Prepend[qit[Drop[q,#]],Take[q,#]]]&[Max@@Select[Range[Length[q]],LyndonQ[Take[q,#]]&]];
    DeleteCases[Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Length[Union[qit[#]]]===k&]],{n,11},{k,n}],0,{2}]
  • PARI
    \\ here b(n) is A059966.
    b(n)={sumdiv(n, d, moebius(n/d) * (2^d-1))/n}
    A(n)=[Vecrev(p/y) | p<-Vec(prod(k=1, n, (1 - y + y/(1-x^k) + O(x*x^n))^b(k))-1)]
    my(T=A(15)); for(n=1, #T, print(T[n])) \\ Andrew Howroyd, Dec 08 2018