A299144 a(n) is the least i such that gcd(Fibonacci(i), i+x) > 1 for all x=0..n.
5, 10, 18, 30, 30, 30, 30, 180, 180, 180, 180, 840, 840, 1260, 1260, 1260, 1260, 24480, 24480, 63000, 63000, 63000, 63000, 63000, 63000, 63000, 63000, 63000, 63000, 356400, 356400, 356400, 356400, 356400, 356400, 356400, 356400, 5783400, 5783400, 5783400, 5783400, 5783400, 5783400
Offset: 0
Keywords
Examples
5 is the smallest integer i such that gcd(F(i), i) > 1, because F(5)=5. Therefore a(0)=5. 10 is the smallest integer i such that gcd(F(i), i) > 1 and gcd(F(i), i+1) > 1, because F(10)=55, not coprime to 10 nor 11. Therefore a(1)=10.
Programs
-
Mathematica
Nest[Function[a, Append[a, SelectFirst[Range[10^5], Function[i, AllTrue[i + Range[0, Length@ a], ! CoprimeQ[Fibonacci@ i, #] &]]]]], {}, 29] (* Michael De Vlieger, Feb 05 2018 *)
-
PARI
isok(k, n) = {for (x=0, n, if (gcd(fibonacci(k), k+x) == 1, return(0));); return(1);} a(n) = {my(k=1); while (!isok(k,n), k++); k;} \\ Michel Marcus, Feb 05 2018
-
Python
p0=0 p1=1 def GCD(x,y): tmp = y y = x % y if y==0: return tmp return GCD(tmp, y) n=0 for i in range(1,1000000): p0,p1 = p1, p0+p1 for x in range(1000000): if GCD(p0,i+x)==1: break for j in range(n, x): print(i) if x>n: n=x
Extensions
a(29)-a(36) from Michael De Vlieger, Feb 05 2018
a(37)-a(42) from Jon E. Schoenfield, Apr 24 2018