A299152 Denominators of the positive solution to 2^(n-1) = Sum_{d|n} a(d) * a(n/d).
1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Examples
Sequence begins: 1, 1, 2, 7/2, 8, 14, 32, 121/2, 126, 248, 512, 1003, 2048, 4064, 8176, 130539/8, 32768.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
Mathematica
nn=50; sys=Table[2^(n-1)==Sum[a[d]*a[n/d],{d,Divisors[n]}],{n,nn}]; Denominator[Array[a,nn]/.Solve[sys,Array[a,nn]][[2]]]
-
PARI
up_to = 65537; prepareA299151perA299152(up_to) = { my(vmemo = vector(up_to)); for(n=1,up_to, vmemo[n] = if(1==n,n,(2^(n-1)-sumdiv(n,d,if((d>1)&&(d
A299152 = prepareA299151perA299152(up_to); A299151perA299152(n) = v299151perA299152[n]; \\ Or without memoization as: A299151perA299152(n) = if(1==n,n,(2^(n-1)-sumdiv(n,d,if((d>1)&&(d A299151perA299152(d)*A299151perA299152(n/d),0)))/2); A299152(n) = denominator(A299151perA299152(n)); \\ Antti Karttunen, Jul 29 2018
Extensions
More terms from Antti Karttunen, Jul 29 2018