A299157 Numbers k such that k+1 divides tau(k), where tau(k) = A000594(k) is Ramanujan's tau function.
2, 3, 5, 6, 7, 11, 13, 17, 19, 20, 22, 23, 27, 29, 31, 41, 45, 47, 53, 55, 59, 68, 71, 76, 77, 79, 83, 87, 89, 91, 97, 104, 107, 114, 127, 137, 139, 149, 160, 167, 171, 177, 179, 183, 191, 195, 199, 209, 223, 229, 239, 240, 243, 251, 269, 275, 293, 297, 321, 343
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..500
- Eric Weisstein's World of Mathematics, Tau Function.
Programs
-
Mathematica
q[k_] := Divisible[RamanujanTau[k], k+1]; Select[Range[350], q] (* Amiram Eldar, Jan 08 2025 *)
-
PARI
isok(n) = (ramanujantau(n) % (n+1)) == 0; \\ Michel Marcus, Feb 05 2018
Comments