A299195 Number of ordered ways of writing n^4 as a sum of n fourth powers of positive integers.
1, 1, 0, 0, 0, 30, 6, 0, 0, 0, 360, 157080, 0, 12586860, 0, 714233520, 579379361, 48062263014, 46026944529624, 759085890469938, 170947379002578290, 3331302954541376850, 479526242126281889924, 11322897238957194004884, 1341983461418984670506352, 31585668052999315295625900
Offset: 0
Keywords
Examples
a(6) = 6 because we have [256, 256, 256, 256, 256, 16], [256, 256, 256, 256, 16, 256], [256, 256, 256, 16, 256, 256], [256, 256, 16, 256, 256, 256], [256, 16, 256, 256, 256, 256] and [16, 256, 256, 256, 256, 256].
Links
- Eric Weisstein's World of Mathematics, Biquadratic Number
Programs
-
Mathematica
a[0] = 1; a[n_] := Coefficient[Sum[x^k^4, {k, n-1}]^n // Expand, x, n^4]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 25}] (* Jean-François Alcover, Feb 05 2018 *)
Formula
a(n) = [x^(n^4)] (Sum_{k>=1} x^(k^4))^n.
Extensions
More terms from Alois P. Heinz, Feb 04 2018