A299211 Expansion of 1/(1 - x*Product_{k>=1} (1 - x^k)^k).
1, 1, 0, -3, -6, -4, 12, 39, 52, -9, -186, -392, -285, 610, 2291, 3200, -150, -10626, -23487, -18841, 32957, 134848, 198246, 13961, -605248, -1409604, -1234474, 1744213, 7898753, 12209679, 2161666, -34344627, -84393284, -79993042, 90692470, 461463974, 749309529, 207447895, -1939084232
Offset: 0
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 0..3925
- N. J. A. Sloane, Transforms
Crossrefs
Programs
-
Maple
N:= 100: # for a(0)..a(N) S:= series(1/(1-x*mul((1-x^k)^k,k=1..N)),x,N+1): seq(coeff(S,x,i),i=0..N); # Robert Israel, Feb 05 2023
-
Mathematica
nmax = 38; CoefficientList[Series[1/(1 - x Product[(1 - x^k)^k, {k, 1, nmax}]), {x, 0, nmax}], x]
Formula
G.f.: 1/(1 - x*Product_{k>=1} (1 - x^k)^k).
a(0) = 1; a(n) = Sum_{k=1..n} A073592(k-1)*a(n-k).