A299214 Number of representations of integers by cyclotomic binary forms.
0, 0, 8, 16, 8, 0, 24, 4, 16, 8, 8, 12, 40, 0, 0, 40, 16, 4, 24, 8, 24, 0, 0, 0, 24, 8, 12, 24, 8, 0, 32, 8, 0, 8, 0, 16, 32, 0, 24, 8, 8, 0, 32, 0, 8, 0, 0, 12, 40, 12, 0, 32, 8, 0, 8, 0, 32, 8, 0, 0, 48, 0, 24, 40, 16, 0, 24, 8, 0, 0, 0, 4, 48, 8, 12, 24
Offset: 1
Keywords
Links
- Michel Waldschmidt, Table of n, a(n) for n = 1..1000
- Étienne Fouvry, Claude Levesque, Michel Waldschmidt, Representation of integers by cyclotomic binary forms, arXiv:1712.09019 [math.NT], 2017.
Crossrefs
Programs
-
Julia
using Nemo function countA296095(n) if n < 3 return 0 end R, x = PolynomialRing(ZZ, "x") K = Int(floor(5.383*log(n)^1.161)) # Bounds from M = Int(floor(2*sqrt(n/3))) # Fouvry & Levesque & Waldschmidt N = QQ(n); count = 0 for k in 3:K e = Int(eulerphi(ZZ(k))) c = cyclotomic(k, x) for m in 1:M, j in 0:M if max(j, m) > 1 N == m^e*subst(c, QQ(j,m)) && (count += 1) end end end 4*count end A299214list(upto) = [countA296095(n) for n in 1:upto] print(A299214list(76)) # Peter Luschny, Feb 25 2018
-
Maple
x := 'x'; y := 'y': with(numtheory): for n from 3 to 1000 do F[n] := expand(y^phi(n)*cyclotomic(n, x/y)) od: g := 0: for m from 1 to 1000 do for n from 3 to 60 do # For the bounds see the reference. for x from -60 to 60 do for y from -60 to 60 do if F[n] = m and max(abs(x), abs(y)) > 1 then g := g+1 fi: od: od: od: a[m] := g: print(m, a[m]): g := 0 od:
-
Mathematica
For[n = 3, n <= 100, n++, F[n] = Expand[y^EulerPhi[n] Cyclotomic[n, x/y]]]; g = 0; For[m = 1, m <= 100, m++, For[n = 3, n <= 60, n++, For[x = -60, x <= 60, x++, For[y = -60, y <= 60, y++, If[F[n] == m && Max[Abs[x], Abs[y] ] > 1, g = g+1]]]]; a[m] = g; Print[m, " ", a[m]]; g = 0]; Array[a, 100] (* Jean-François Alcover, Dec 01 2018, from Maple *)
Comments