A299733 Prime numbers represented in more than one way by cyclotomic binary forms f(x,y) with x and y prime numbers and y < x.
19, 97, 33751
Offset: 1
Examples
33751 = f(131,79) for f(x,y) = x^2 + x*y + y^2. 33751 = f( 13, 2) for f(x,y) = x^4+x^3*y+x^2*y^2+x*y^3+y^4.
Links
- Étienne Fouvry, Claude Levesque, Michel Waldschmidt, Representation of integers by cyclotomic binary forms, arXiv:1712.09019 [math.NT], 2017.
Crossrefs
Programs
-
Julia
using Nemo function isA299733(n) if n < 3 || !isprime(ZZ(n)) return false end R, x = PolynomialRing(ZZ, "x") K = floor(Int, 5.383*log(n)^1.161) # Bounds from M = floor(Int, 2*sqrt(n/3)) # Fouvry & Levesque & Waldschmidt N = QQ(n); multi = 0 for k in 3:K e = Int(eulerphi(ZZ(k))) c = cyclotomic(k, x) for m in 2:M if isprime(ZZ(m)) for j in m:M if isprime(ZZ(j)) if N == m^e*subst(c, QQ(j,m)) multi += 1 end end end end end end multi > 1 end # Peter Luschny, May 16 2019
-
PARI
A299733(upto) = { my(K, M, phi, multi); forprime(n = 2, upto, multi = 0; K = floor(5.383*log(n)^1.161); M = floor(2*sqrt(n/3)); for(k = 3, K, phi = eulerphi(k); forprime(y = 2, M, forprime(x = y + 1, M, if(n == y^phi*polcyclo(k, x/y), multi += 1 ) ) ) ); if(multi > 1, print(n," has multiple reps!")) ) } A299733(100000)
Comments