A299930 Prime numbers represented by a cyclotomic binary form f(x, y) with x and y odd prime numbers and x > y.
19, 37, 79, 97, 109, 127, 139, 163, 223, 229, 277, 283, 313, 349, 397, 421, 433, 439, 457, 607, 643, 691, 727, 733, 739, 877, 937, 997, 1063, 1093, 1327, 1423, 1459, 1489, 1567, 1579, 1597, 1627, 1657, 1699, 1753, 1777, 1801, 1987, 1999, 2017, 2089, 2113, 2203
Offset: 1
Keywords
Links
- Étienne Fouvry, Claude Levesque, Michel Waldschmidt, Representation of integers by cyclotomic binary forms, arXiv:1712.09019 [math.NT], 2017.
Crossrefs
Programs
-
Julia
using Nemo function isA299930(n) !isprime(ZZ(n)) && return false R, z = PolynomialRing(ZZ, "z") K = Int(floor(5.383*log(n)^1.161)) # Bounds from M = Int(floor(2*sqrt(n/3))) # Fouvry & Levesque & Waldschmidt N = QQ(n) P(u) = (p for p in u:M if isprime(ZZ(p))) for k in 3:K e = Int(eulerphi(ZZ(k))) c = cyclotomic(k, z) for y in P(3), x in P(y+2) N == y^e*subst(c, QQ(x, y)) && return true end end return false end A299930list(upto) = [n for n in 1:upto if isA299930(n)] println(A299930list(2203))
Comments