cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299254 Coordination sequence for 3D uniform tiling formed by stacking parallel layers of the 3^4.6 2D tiling (cf. A250120).

Original entry on oeis.org

1, 7, 21, 45, 79, 122, 175, 237, 309, 391, 482, 583, 693, 813, 943, 1082, 1231, 1389, 1557, 1735, 1922, 2119, 2325, 2541, 2767, 3002, 3247, 3501, 3765, 4039, 4322, 4615, 4917, 5229, 5551, 5882, 6223, 6573, 6933, 7303, 7682, 8071, 8469, 8877, 9295, 9722, 10159, 10605, 11061, 11527, 12002
Offset: 0

Views

Author

N. J. A. Sloane, Feb 06 2018

Keywords

References

  • B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #17.

Crossrefs

Partial sums: A299260.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Programs

  • Mathematica
    LinearRecurrence[{2, -1, 0, 0, 1, -2, 1}, {1, 7, 21, 45, 79, 122, 175, 237}, 50] (* Paolo Xausa, Jan 16 2025 *)
  • PARI
    Vec((1 + x)*(1 + x + x^2)*(1 + 3*x + 3*x^3 + x^4) / ((1 - x)^3*(1 + x + x^2 + x^3 + x^4)) + O(x^60)) \\ Colin Barker, Feb 07 2018

Formula

G.f.: (x^2+x+1)*(x^4+3*x^3+3*x+1)*(x+1) / ((x^4+x^3+x^2+x+1)*(1-x)^3). (This is the product of the g.f.'s for A250120 and A040000. - N. J. A. Sloane, Nov 10 2018)
a(n) = 2*a(n-1) - a(n-2) + a(n-5) - 2*a(n-6) + a(n-7) for n>7. - Colin Barker, Feb 07 2018
a(n) = 2*((sqrt(5) - 5)*(5 + 12*n^2) - (sqrt(5) - 1)*cos(2*n*Pi/5) + (sqrt(5) - 1)*cos(4*n*Pi/5))/(5*(sqrt(5) - 5)) for n > 0. - Stefano Spezia, Jun 06 2024