cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299261 Partial sums of A299255.

Original entry on oeis.org

1, 8, 31, 81, 168, 303, 497, 760, 1103, 1537, 2072, 2719, 3489, 4392, 5439, 6641, 8008, 9551, 11281, 13208, 15343, 17697, 20280, 23103, 26177, 29512, 33119, 37009, 41192, 45679, 50481, 55608, 61071, 66881, 73048, 79583, 86497, 93800, 101503, 109617
Offset: 0

Views

Author

N. J. A. Sloane, Feb 07 2018

Keywords

Comments

Euler transform of length 3 sequence [8, -5, 1]. - Michael Somos, Oct 03 2018

Crossrefs

Cf. A299255.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Programs

  • Mathematica
    a[ n_] := (8 (2 n + 1) (n^2 + n + 1) - Mod[n - 1, 3, -1]) / 9; (* Michael Somos, Oct 03 2018 *)
    LinearRecurrence[{3,-3,2,-3,3,-1},{1,8,31,81,168,303},50] (* Harvey P. Dale, May 15 2025 *)
  • PARI
    Vec((1 + x)^5 / ((1 - x)^4*(1 + x + x^2)) + O(x^60)) \\ Colin Barker, Feb 09 2018
    
  • PARI
    {a(n) =  (8 * (2*n + 1) * (n^2 + n + 1) + (n%3==0) - (n%3==2)) / 9}; /* Michael Somos, Oct 03 2018 */

Formula

From Colin Barker, Feb 09 2018: (Start)
G.f.: (1 + x)^5 / ((1 - x)^4*(1 + x + x^2)).
a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3) - 3*a(n-4) + 3*a(n-5) - a(n-6) for n>5.
(End)
a(n) = -a(-1-n) for all n in Z. - Michael Somos, Oct 03 2018