A299261 Partial sums of A299255.
1, 8, 31, 81, 168, 303, 497, 760, 1103, 1537, 2072, 2719, 3489, 4392, 5439, 6641, 8008, 9551, 11281, 13208, 15343, 17697, 20280, 23103, 26177, 29512, 33119, 37009, 41192, 45679, 50481, 55608, 61071, 66881, 73048, 79583, 86497, 93800, 101503, 109617
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,2,-3,3,-1).
Crossrefs
Cf. A299255.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
Programs
-
Mathematica
a[ n_] := (8 (2 n + 1) (n^2 + n + 1) - Mod[n - 1, 3, -1]) / 9; (* Michael Somos, Oct 03 2018 *) LinearRecurrence[{3,-3,2,-3,3,-1},{1,8,31,81,168,303},50] (* Harvey P. Dale, May 15 2025 *)
-
PARI
Vec((1 + x)^5 / ((1 - x)^4*(1 + x + x^2)) + O(x^60)) \\ Colin Barker, Feb 09 2018
-
PARI
{a(n) = (8 * (2*n + 1) * (n^2 + n + 1) + (n%3==0) - (n%3==2)) / 9}; /* Michael Somos, Oct 03 2018 */
Formula
From Colin Barker, Feb 09 2018: (Start)
G.f.: (1 + x)^5 / ((1 - x)^4*(1 + x + x^2)).
a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3) - 3*a(n-4) + 3*a(n-5) - a(n-6) for n>5.
(End)
a(n) = -a(-1-n) for all n in Z. - Michael Somos, Oct 03 2018
Comments