cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299262 Partial sums of A299256.

Original entry on oeis.org

1, 7, 25, 65, 137, 249, 411, 631, 919, 1283, 1733, 2277, 2925, 3685, 4567, 5579, 6731, 8031, 9489, 11113, 12913, 14897, 17075, 19455, 22047, 24859, 27901, 31181, 34709, 38493, 42543, 46867, 51475, 56375, 61577, 67089, 72921, 79081, 85579, 92423, 99623, 107187, 115125, 123445, 132157, 141269, 150791, 160731, 171099
Offset: 0

Views

Author

N. J. A. Sloane, Feb 07 2018

Keywords

Crossrefs

Cf. A299256.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Programs

  • Mathematica
    LinearRecurrence[{3,-2,-2,3,-1},{1,7,25,65,137,249},50] (* Harvey P. Dale, Jul 22 2024 *)
  • PARI
    Vec((1 + 2*x)*(1 + 2*x + 2*x^2 + 2*x^3 - x^4) / ((1 - x)^4*(1 + x)) + O(x^60)) \\ Colin Barker, Feb 09 2018

Formula

From Colin Barker, Feb 09 2018: (Start)
G.f.: (1 + 2*x)*(1 + 2*x + 2*x^2 + 2*x^3 - x^4) / ((1 - x)^4*(1 + x)).
a(n) = (6*n^3 + 9*n^2 + 2*n + 12) / 4 for n>0 and even.
a(n) = (6*n^3 + 9*n^2 + 2*n + 11) / 4 for n odd.
a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5) for n>5. (End)
E.g.f.: ((12 + 17*x + 27*x^2 + 6*x^3)*cosh(x) + (11 + 17*x + 27*x^2 + 6*x^3)*sinh(x) - 8)/4. - Stefano Spezia, Mar 14 2024