cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299266 Coordination sequence for "cab" 3D uniform tiling formed from octahedra and truncated cubes.

Original entry on oeis.org

1, 5, 9, 22, 37, 57, 82, 117, 145, 178, 229, 281, 322, 377, 445, 514, 577, 645, 730, 825, 901, 982, 1093, 1205, 1294, 1397, 1525, 1654, 1765, 1881, 2026, 2181, 2305, 2434, 2605, 2777, 2914, 3065, 3253, 3442, 3601, 3765, 3970, 4185, 4357, 4534, 4765, 4997, 5182, 5381, 5629, 5878, 6085, 6297, 6562, 6837
Offset: 0

Views

Author

N. J. A. Sloane, Feb 07 2018

Keywords

Comments

First 20 terms computed by Davide M. Proserpio using ToposPro.

References

  • B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #8.

Crossrefs

See A299267 for partial sums.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Programs

  • Magma
    I:=[22, 37, 57, 82, 117, 145, 178,229, 281,322]; [1,5,9] cat [n le 10 select I[n] else Self(n-1) -Self(n-2) +2*Self(n-3)-2*Self(n-7)+Self(n-8)-Self(n-9) + Self(n-10): n in [1..30]]; // G. C. Greubel, Feb 20 2018
  • Mathematica
    CoefficientList[Series[(4*x^12-4*x^11+x^10+5*x^8+20*x^7+18*x^6+24*x^5 +14*x^4+16*x^3+5*x^2+4*x+1)/((1-x)*(1-x^2)*(1-x^3)*(1+x^2)^2), {x,0, 50}], x] (* G. C. Greubel, Feb 20 2018 *)
  • PARI
    Vec((1 + 4*x + 5*x^2 + 16*x^3 + 14*x^4 + 24*x^5 + 18*x^6 + 20*x^7 + 5*x^8 + x^10 - 4*x^11 + 4*x^12) / ((1 - x)^3*(1 + x)*(1 + x^2)^2*(1 + x + x^2)) + O(x^60)) \\ Colin Barker, Feb 15 2018
    

Formula

G.f.: (4*x^12 -4*x^11 +x^10 +5*x^8 +20*x^7 +18*x^6 +24*x^5 +14*x^4 +16*x^3 +5*x^2 +4*x +1)/((1-x)*(1-x^2)*(1-x^3)*(1+x^2)^2). - N. J. A. Sloane, Feb 12 2018
a(n) = a(n-1) - a(n-2) + 2*a(n-3) - 2*a(n-7) + a(n-8) - a(n-9) + a(n-10) for n>12. - Colin Barker, Feb 15 2018

Extensions

a(21)-a(40) from Davide M. Proserpio, Feb 12 2018