A299267 Partial sums of A299266.
1, 6, 15, 37, 74, 131, 213, 330, 475, 653, 882, 1163, 1485, 1862, 2307, 2821, 3398, 4043, 4773, 5598, 6499, 7481, 8574, 9779, 11073, 12470, 13995, 15649, 17414, 19295, 21321, 23502, 25807, 28241, 30846, 33623, 36537, 39602, 42855, 46297, 49898, 53663, 57633, 61818, 66175, 70709, 75474, 80471, 85653, 91034, 96663
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-2,3,-2,0,0,-2,3,-2,2,-1).
Crossrefs
Cf. A299266.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
Programs
-
Magma
I:=[15,37,74,131,213,330,475,653,882,1163,1485]; [1,6] cat [n le 11 select I[n] else 2*Self(n-1) -2*Self(n-2) +3*Self(n-3)-2*Self(n-4)-2*Self(n-7) +3*Self(n-8) -2*Self(n-9)+2*Self(n-10)-Self(n-11): n in [1..30]]; // G. C. Greubel, Feb 20 2018
-
Mathematica
CoefficientList[Series[(1 +4*x +5*x^2 +16*x^3 +14*x^4 +24*x^5 +18*x^6 +20*x^7 +5*x^8 + x^10 -4*x^11 +4*x^12)/((1 -x)^4*(1 +x)*(1 +x^2)^2*(1 +x +x^2)), {x, 0, 50}], x] (* G. C. Greubel, Feb 20 2018 *) LinearRecurrence[{2,-2,3,-2,0,0,-2,3,-2,2,-1},{1,6,15,37,74,131,213,330,475,653,882,1163,1485},60] (* Harvey P. Dale, Sep 03 2018 *)
-
PARI
Vec((1 + 4*x + 5*x^2 + 16*x^3 + 14*x^4 + 24*x^5 + 18*x^6 + 20*x^7 + 5*x^8 + x^10 - 4*x^11 + 4*x^12) / ((1 - x)^4*(1 + x)*(1 + x^2)^2*(1 + x + x^2)) + O(x^60)) \\ Colin Barker, Feb 15 2018
Formula
From Colin Barker, Feb 15 2018: (Start)
G.f.: (1 +4*x +5*x^2 +16*x^3 +14*x^4 +24*x^5 +18*x^6 +20*x^7 +5*x^8 + x^10 -4*x^11 +4*x^12)/((1 -x)^4*(1 +x)*(1 +x^2)^2*(1 +x +x^2)).
a(n) = 2*a(n-1) - 2*a(n-2) + 3*a(n-3) - 2*a(n-4) - 2*a(n-7) + 3*a(n-8) - 2*a(n-9) + 2*a(n-10) - a(n-11) for n>12.
(End)