A299269 Partial sums of A299268.
1, 7, 25, 73, 151, 277, 459, 699, 1029, 1419, 1941, 2517, 3275, 4073, 5111, 6167, 7529, 8879, 10609, 12289, 14431, 16477, 19075, 21523, 24621, 27507, 31149, 34509, 38739, 42609, 47471, 51887, 57425, 62423, 68681, 74297, 81319, 87589, 95419, 102379, 111061
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,3,-3,-3,3,1,-1).
Crossrefs
Cf. A299268.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
Programs
-
Magma
I:=[25,73,151,277,459,699,1029]; [1,7] cat [n le 7 select I[n] else Self(n-1) + 3*Self(n-2) - 3*Self(n-3) - 3*Self(n-4) + 3*Self(n-5) + Self(n-6) - Self(n-7): n in [1..30]]; // G. C. Greubel, Feb 20 2018
-
Mathematica
CoefficientList[Series[(1+6*x+15*x^2+30*x^3+27*x^4+x^6)/((1-x)^4*(1+ x)^3), {x, 0, 50}], x] (* G. C. Greubel, Feb 20 2018 *)
-
PARI
Vec((1 + 6*x + 15*x^2 + 30*x^3 + 27*x^4 + x^6) / ((1 - x)^4*(1 + x)^3) + O(x^60)) \\ Colin Barker, Feb 09 2018
Formula
From Colin Barker, Feb 09 2018: (Start)
G.f.: (1 + 6*x + 15*x^2 + 30*x^3 + 27*x^4 + x^6) / ((1 - x)^4*(1 + x)^3).
a(n) = (20*n^3 + 33*n^2 - 2*n + 12) / 12 for n even.
a(n) = (20*n^3 + 27*n^2 + 28*n + 9) / 12 for n odd.
a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7) for n>6. (End)
E.g.f.: ((12 + 75*x + 93*x^2 + 20*x^3)*cosh(x) + (9 + 51*x + 87*x^2 + 20*x^3)*sinh(x))/12. - Stefano Spezia, Mar 14 2024