cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299283 Coordination sequence for "svh" 3D uniform tiling.

Original entry on oeis.org

1, 7, 22, 48, 84, 130, 186, 253, 330, 417, 514, 622, 740, 868, 1006, 1155, 1314, 1483, 1662, 1852, 2052, 2262, 2482, 2713, 2954, 3205, 3466, 3738, 4020, 4312, 4614, 4927, 5250, 5583, 5926, 6280, 6644, 7018, 7402, 7797, 8202, 8617, 9042, 9478, 9924, 10380
Offset: 0

Views

Author

N. J. A. Sloane, Feb 10 2018

Keywords

Comments

First 20 terms computed by Davide M. Proserpio using ToposPro.

References

  • B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #15.

Crossrefs

See A299284 for partial sums.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Programs

  • Mathematica
    LinearRecurrence[{2,-1,0,1,-2,1},{1,7,22,48,84,130,186},50] (* Harvey P. Dale, May 19 2019 *)
  • PARI
    Vec((1 + 5*x + 9*x^2 + 11*x^3 + 9*x^4 + 5*x^5 + x^6) / ((1 - x)^3*(1 + x)*(1 + x^2)) + O(x^60)) \\ Colin Barker, Feb 11 2018

Formula

G.f.: (x^6+5*x^5+9*x^4+11*x^3+9*x^2+5*x+1)/((x+1)*(x^2+1)*(1-x)^3).
a(n) = 2*a(n-1) - a(n-2) + a(n-4) - 2*a(n-5) + a(n-6) for n>6. - Colin Barker, Feb 11 2018
a(n) = (29 - (-1)^n + 82*n^2 + 4*A056594(n))/16 for n > 0. - Stefano Spezia, Jun 06 2024