A299300 Values of k such that A065358(k-1) = 0.
1, 3, 7, 35, 39, 43, 51, 55, 79, 87, 91, 107, 111, 115, 835, 843, 1391, 1407, 1411, 1471, 1579, 1587, 1651, 1663, 1843, 1851, 3383, 3491, 3507, 3515, 3519, 3547, 3659, 3691, 3719, 3747, 3779, 3819, 3823, 3843, 3851, 3855, 3871, 3899, 3939, 3947, 3987, 3991
Offset: 1
Keywords
Links
- Alberto Fraile, Roberto MartÃnez, and Daniel Fernández, Jacob's Ladder: Prime numbers in 2d, arXiv preprint arXiv:1801.01540 [math.HO], 2017.
Programs
-
Mathematica
A065358:= Table[Sum[(-1)^(PrimePi[k]), {k,1,n}], {n, 0, 500}]; Select[Range[50], A065358[[#]] == 0 &] (* G. C. Greubel, Feb 20 2018 *)
-
Python
from sympy import nextprime A299300_list, p, d, n, r = [], 2, -1, 0, False while n <= 10**6: pn, k = p-n, d if r else -d if 0 < k <= pn: A299300_list.append(n+k) d += -pn if r else pn r, n, p = not r, p, nextprime(p) # Chai Wah Wu, Feb 21 2018
Comments