A299415 Number of steps of iterating z -> z^2 + c with c = 1/4 + 10^(-n) to reach z > 2, starting with z = 0.
2, 8, 30, 97, 312, 991, 3140, 9933, 31414, 99344, 314157, 993457, 3141591, 9934586, 31415925, 99345881, 314159263, 993458825, 3141592652, 9934588264
Offset: 0
References
- Heinz-Otto Peitgen; Hartmut Jürgens; Dietmar Saupe: Chaos. Bausteine der Ordnung. Berlin; Heidelberg: Springer, 1994, p. 452-456.
Links
- Gerald Edgar, Pi and the Mandelbrot set. (The Ohio State University.)
- Boris Gourévitch, Pi and fractal sets. The Mandelbrot set -- Dave Boll -- Gerald Edgar. (The World of Pi.)
- Brady Haran and Holly Krieger, Pi and the Mandelbrot Set, Numberphile channel on YouTube, Oct. 1, 2015.
- Aaron Klebanoff, Pi in the Mandelbrot Set, Fractals 9 (2001), nr. 4, p. 393-402.
Crossrefs
Programs
-
Maple
Digits:=10^3: f:=proc(z,c,k) option remember; f(z,c,k-1)^2+c; end; a:=proc(n) local epsilon, c, k; epsilon:=10.^(-n): c:=0.25+epsilon: f(0,c,0):=0: for k do if abs(f(0,c,k))>2 then break; fi; od: return(k); end; seq(a(n),n=0..11);
-
Mathematica
digits = 10^3; f[z_, c_, k_] := f[z, c, k] = f[z, c, k-1]^2 + c; a[n_] := Module[{epsilon = 10^-n, c, k}, c = N[1/4 + epsilon, digits]; f[0, c, 0] = 0; For[k = 1, True, k++, If[Abs[f[0, c, k]] > 2, Break[]]]; k]; a /@ Range[0, 11] (* Jean-François Alcover, Nov 05 2020, after Maple *)
-
PARI
apply( {A299415(n)=A332061(10^n)}, [0..12]) \\ a(12) may take about a second to compute. - M. F. Hasler, Feb 22 2020
-
Python
A299415 = lambda n: A332061(10**n) # Warning: may give incorrect result for default (double) precision for n >= 12. - M. F. Hasler, Feb 22 2020
Extensions
Edited and extended to a(14) by M. F. Hasler, Feb 22 2020
a(15)-a(19) from Bill McEachen, Aug 10 2025
Comments