cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299613 Decimal expansion of 2*W(1), where W is the Lambert W function (or PowerLog); see Comments.

Original entry on oeis.org

1, 1, 3, 4, 2, 8, 6, 5, 8, 0, 8, 1, 9, 5, 6, 7, 7, 4, 5, 9, 9, 9, 9, 3, 7, 3, 2, 4, 4, 2, 0, 7, 1, 1, 0, 9, 9, 5, 0, 7, 6, 3, 1, 5, 7, 4, 3, 7, 3, 0, 2, 5, 0, 1, 6, 2, 7, 0, 2, 6, 2, 1, 5, 8, 4, 4, 6, 0, 9, 1, 5, 8, 6, 1, 7, 3, 3, 6, 9, 1, 3, 3, 3, 8, 6, 4
Offset: 1

Views

Author

Clark Kimberling, Mar 01 2018

Keywords

Comments

The Lambert W function satisfies the functional equations
W(x) + W(y) = W(x*y*(1/W(x) + 1/W(y))) = log(x*y)/(W(x)*W(y)) for x and y greater than -1/e, so that 2*W(1) = W(2/W(1)) = -2*log(W(1)).
Guide to related constants:
--------------------------------------------
x y W(x) + W(y) e^(W(x) + W(y))
--------------------------------------------
e e 2 exactly e^2 exactly

Examples

			2*W(1) = 1.13428658081956774599993...
		

Crossrefs

Programs

  • Mathematica
    w[x_] := ProductLog[x]; x = 1; y = 1; u = N[w[x] + w[y], 100]
    RealDigits[u, 10][[1]]  (* A299613 *)
    RealDigits[2 ProductLog[1], 10, 111][[1]] (* Robert G. Wilson v, Mar 02 2018 *)
  • PARI
    2*lambertw(1) \\ G. C. Greubel, Mar 07 2018

Formula

Equals 2*A030178.