cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299647 Positive solutions to x^2 == -2 (mod 11).

Original entry on oeis.org

3, 8, 14, 19, 25, 30, 36, 41, 47, 52, 58, 63, 69, 74, 80, 85, 91, 96, 102, 107, 113, 118, 124, 129, 135, 140, 146, 151, 157, 162, 168, 173, 179, 184, 190, 195, 201, 206, 212, 217, 223, 228, 234, 239, 245, 250, 256, 261, 267, 272, 278, 283, 289, 294, 300, 305, 311, 316
Offset: 1

Views

Author

Bruno Berselli, Mar 06 2018

Keywords

Comments

Positive numbers congruent to {3, 8} mod 11.
Equivalently, interleaving of A017425 and A017485.

Crossrefs

Subsequence of A106252, A279000.
Cf. A017497: positive solutions to x == -2 (mod 11).
Cf. A017437: positive solutions to x^3 == -2 (mod 11).
Nonnegative solutions to x^2 == -2 (mod j): A005843 (j=2), A001651 (j=3), A047235 (j=6), A156638 (j=9), this sequence (j=11).

Programs

  • GAP
    List([1..60], n -> 5*n-2+(2*n-(-1)^n-3)/4);
    
  • Julia
    [(11(2n-1)-(-1)^n)>>2 for n in 1:60] # Peter Luschny, Mar 07 2018
  • Magma
    [5*n-2+(2*n-(-1)^n-3)/4: n in [1..60]];
    
  • Mathematica
    Table[5 n - 2 + (2 n - (-1)^n - 3)/4, {n, 1, 60}]
    CoefficientList[ Series[(3 + 5x + 3x^2)/((x - 1)^2 (x + 1)), {x, 0, 57}], x] (* or *)
    LinearRecurrence[{1, 1, -1}, {3, 8, 14}, 58] (* Robert G. Wilson v, Mar 08 2018 *)
  • Maxima
    makelist(5*n-2+(2*n-(-1)^n-3)/4, n, 1, 60);
    
  • PARI
    vector(60, n, nn; 5*n-2+(2*n-(-1)^n-3)/4)
    
  • Python
    [5*n-2+(2*n-(-1)**n-3)/4 for n in range(1, 60)]
    
  • Sage
    [5*n-2+(2*n-(-1)^n-3)/4 for n in (1..60)]
    

Formula

O.g.f.: x*(3 + 5*x + 3*x^2)/((1 + x)*(1 - x)^2).
E.g.f.: (-1 + 12*exp(x) - 11*exp(2*x) + 22*x*exp(2*x))*exp(-x)/4.
a(n) = -a(-n+1) = a(n-1) + a(n-2) - a(n-3).
a(n) = 5*n - 2 + (2*n - (-1)^n - 3)/4.
a(n) = 4*n - 1 + floor((n - 1)/2) + floor((3*n - 1)/3).
a(n+k) - a(n) = 11*k/2 + (1 - (-1)^k)*(-1)^n/4.
a(n+k) + a(n) = 11*(2*n + k - 1)/2 - (1 + (-1)^k)*(-1)^n/4.
E.g.f.: 3 + ((22*x - 11)*exp(x) - exp(-x))/4. - David Lovler, Aug 08 2022
Sum_{n>=1} (-1)^(n+1)/a(n) = tan(5*Pi/22)*Pi/11. - Amiram Eldar, Feb 27 2023
From Amiram Eldar, Nov 23 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = cosec(3*Pi/22)/2.
Product_{n>=1} (1 + (-1)^n/a(n)) = sec(5*Pi/22)*sin(2*Pi/11). (End)