cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A299708 Numbers of the form m^2 + 1 that can be expressed in more than one way as j^2 + k^2 with j > k > 1.

Original entry on oeis.org

325, 1025, 1445, 1850, 2210, 3250, 4625, 4901, 5185, 5330, 6725, 6890, 8650, 9605, 9802, 11450, 12545, 13690, 13925, 14885, 15130, 16385, 17425, 17690, 19045, 20165, 20450, 21905, 24650, 26245, 28225, 29585, 29930, 30277, 31330, 33125, 33490
Offset: 1

Views

Author

Hugo Pfoertner, Feb 27 2018

Keywords

Examples

			a(1) = 325 = A299707(1)^2 + 1 = 18^2 + 1 is expressible in two ways:
  325 = 17^2 + 6^2 = 15^2 + 10^2.
		

Crossrefs

A300162 Numbers of the form n^2 + 1 that can be expressed as j^2 + k^2, j > k > 1, in more ways than any smaller number of this form.

Original entry on oeis.org

65, 325, 2210, 17425, 58565, 71825, 986050, 2458625, 15657850, 27636050, 205005125, 343842850, 1930020625, 4401924410, 5279766245, 26189596225, 109020153125, 1997821114250, 3001878503650, 5283874574225, 10991001911825, 91178970317825, 253647605037125
Offset: 1

Views

Author

Hugo Pfoertner, Feb 27 2018

Keywords

Examples

			See A300161.
		

Crossrefs

Extensions

a(17) from Hugo Pfoertner, Mar 08 2018
a(18)-a(21) from Robert Price, Mar 10 2018
a(22)-a(23) from Giovanni Resta, Mar 13 2018

A300161 Numbers n such that n^2 + 1 can be expressed as j^2 + k^2, j > k > 1, in more ways than for any smaller n.

Original entry on oeis.org

8, 18, 47, 132, 242, 268, 993, 1568, 3957, 5257, 14318, 18543, 43932, 66347, 72662, 161832, 330182, 1413443, 1732593, 2298668, 3315268, 9548768, 15926318, 24310918, 27028568, 51853693, 162166243, 420024818, 472936732, 599832943, 1892369318
Offset: 1

Views

Author

Hugo Pfoertner, Feb 27 2018

Keywords

Examples

			a(1) = 8: 8^2 + 1 = 65 = 7^2 + 4^2,
a(2) = 18: 18^2 + 1 = 325 = 17^2 + 6^2 = 15^2 + 10^2,
a(3) = 47: 47^2 + 1 = 2210 = 43^2 + 19^2 = 41^2 + 23^2 = 37^2 + 29^2,
a(4) = 132: 132^2 + 1 = 17425 = 129^2 + 28^2 = 127^2 + 36^2 = 120^2 + 55^2 = 116^2 + 63^2 = 105^2 + 80^2.
		

Crossrefs

Extensions

a(17) from Hugo Pfoertner, Mar 08 2018
a(18)-a(21) from Robert Price, Mar 10 2018
a(22)-a(31) from Giovanni Resta, Mar 13 2018

A300163 Records in the number of ways to express a number of the form n^2 + 1 as j^2 + k^2 with j > k > 1.

Original entry on oeis.org

1, 2, 3, 5, 7, 8, 11, 15, 17, 23, 31, 35, 39, 47, 63, 71, 95, 127, 143, 161, 191, 215, 255, 287, 319, 383, 575, 639, 767, 959, 1151
Offset: 1

Views

Author

Hugo Pfoertner, Feb 27 2018

Keywords

Examples

			a(6) = 8 because A300162(6) = A300161(6)^2 + 1 = 71825 is the smallest number expressible in 8 ways: 71825 = 265^2 + 40^2 = 260^2 + 65^2 = 257^2 + 76^2 = 247^2 + 104^2 = 236^2 + 127^2 = 215^2 + 160^2 = 208^2 + 169^2 = 191^2 + 188^2.
		

Crossrefs

Extensions

a(17) from Hugo Pfoertner, Mar 08 2018
a(18)-a(21) from Robert Price, Mar 10 2018
a(22)-a(31) from Giovanni Resta, Mar 13 2018

A300165 Numbers m such that m^2 + 1 can be expressed in more than one way as j^2 + k^2 with j > k > 1 and gcd(j,k) = 1.

Original entry on oeis.org

47, 72, 73, 83, 98, 112, 122, 123, 128, 132, 133, 138, 142, 148, 157, 162, 172, 173, 174, 177, 183, 187, 191, 192, 200, 203, 208, 212, 213, 216, 217, 228, 233, 237, 242, 252, 253, 255, 265, 268, 273, 278, 288, 293, 294, 302, 307, 313, 317, 319
Offset: 1

Views

Author

Hugo Pfoertner, Feb 27 2018

Keywords

Comments

The sequence differs from A299707 by the gcd condition, which excludes representations like 18^2 + 1 = 15^2 + 10^2, 32^2 + 1 = 25^2 + 20^2, 38^2 + 1 = 34^2 + 17^2.

Examples

			a(1) = 47 because its 3 representations satisfy the conditions j > k > 1 and gcd(j,k) = 1: 47^2 + 1 = 2210 = 43^2 + 19^2 = 41^2 + 23^2 = 37^2 + 29^2.
		

Crossrefs

A300166 Numbers of the form m^2 + 1 that can be expressed in more than one way as j^2 + k^2 with j > k > 1 and gcd(j,k) = 1.

Original entry on oeis.org

2210, 5185, 5330, 6890, 9605, 12545, 14885, 15130, 16385, 17425, 17690, 19045, 20165, 21905, 24650, 26245, 29585, 29930, 30277, 31330, 33490, 34970, 36482, 36865, 40001, 41210, 43265, 44945, 45370, 46657, 47090, 51985, 54290, 56170, 58565, 63505
Offset: 1

Views

Author

Hugo Pfoertner, Feb 27 2018

Keywords

Comments

The sequence differs from A299708 by the gcd condition, which excludes representations like 325 = 18^2 + 1^2 = 15^2 + 10^2, 1025 = 32^2 + 1 = 25^2 + 20^2, 1445 = 38^2 + 1 = 34^2 + 17^2.

Examples

			a(1) = 2210 because its 3 representations satisfy the conditions j > k > 1 and gcd(j,k) = 1: 2210 = 47^2 + 1 = 43^2 + 19^2 = 41^2 + 23^2 = 37^2 + 29^2.
		

Crossrefs

Showing 1-6 of 6 results.