cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A071385 Number of points (i,j) on the circumference of a circle around (0,0) with squared radius A071383(n).

Original entry on oeis.org

1, 4, 8, 12, 16, 24, 32, 36, 48, 64, 72, 80, 96, 128, 144, 160, 192, 256, 288, 320, 384, 512, 576, 640, 768, 864, 1024, 1152, 1280, 1536, 1728, 2048, 2304, 2560, 3072, 3456, 3840, 4096, 4608, 5120, 6144, 6912, 7680, 8192, 9216, 10240, 11520, 12288, 13824, 15360
Offset: 1

Views

Author

Hugo Pfoertner, May 23 2002

Keywords

Examples

			Circles with radius 1 and 2 have 4 lattice points on their circumference, so a(1)=4. A circle with radius sqrt(5) passes through 8 lattice points of the shape (2,1), so a(2)=8. A circle with radius 5 passes through 4 lattice points of shape (5,0) and through 8 points of shape (4,3), so a(3)=4+8=12
A071383(11) = 5^2 * 13^2 * 17^1 = 71825. Therefore A071385(11) = 4*(2+1)*(2+1)*(1+1) = 72.
		

Crossrefs

Programs

  • PARI
    my(v=list(10^15), rec=0); print1(1, ", "); for(n=1, #v, if(numdiv(v[n])>rec, rec=numdiv(v[n]); print1(4*rec, ", "))) \\ Jianing Song, May 20 2021, see program for A054994

Formula

a(n) = 4 * Product_{k=1..klim} (e_k + 1), where klim and e_1 >= e_2 >= ... >= e_klim > 0 are known from A071383(n) = Product_{k=1..klim} p_k^e_k, with p_k = k-th prime of the form 4i+1. (J. H. Conway)
a(n) = 4*A000005(A071383(n)) for n > 1.
a(n) = A004018(A071383(n)).
a(n) = A002654(A071383(n)) for n > 1. - Jianing Song, May 20 2021
a(n) = 4*A344470(n-1) for n > 1. - Hugo Pfoertner, Sep 04 2022

A299707 Numbers m such that m^2 + 1 can be expressed in more than one way as j^2 + k^2 with j > k > 1.

Original entry on oeis.org

18, 32, 38, 43, 47, 57, 68, 70, 72, 73, 82, 83, 93, 98, 99, 107, 112, 117, 118, 122, 123, 128, 132, 133, 138, 142, 143, 148, 157, 162, 168, 172, 173, 174, 177, 182, 183, 187, 191, 192, 193, 200, 203, 207, 208, 212, 213, 216, 217, 218, 228, 232, 233, 237, 242, 243, 251, 252
Offset: 1

Views

Author

Hugo Pfoertner, Feb 27 2018

Keywords

Examples

			a(1) = 18: 18^2 + 1 = 325 = 17^2 + 6^2 = 15^2 + 10^2,
a(2) = 32: 32^2 + 1 = 1025 = 31^2 + 8^2 = 25^2 + 20^2,
a(5) = 47: 47^2 + 1 = 2210 = 43^2 + 19^2 = 41^2 + 23^2 = 37^2 + 29^2.
		

Crossrefs

A299708 Numbers of the form m^2 + 1 that can be expressed in more than one way as j^2 + k^2 with j > k > 1.

Original entry on oeis.org

325, 1025, 1445, 1850, 2210, 3250, 4625, 4901, 5185, 5330, 6725, 6890, 8650, 9605, 9802, 11450, 12545, 13690, 13925, 14885, 15130, 16385, 17425, 17690, 19045, 20165, 20450, 21905, 24650, 26245, 28225, 29585, 29930, 30277, 31330, 33125, 33490
Offset: 1

Views

Author

Hugo Pfoertner, Feb 27 2018

Keywords

Examples

			a(1) = 325 = A299707(1)^2 + 1 = 18^2 + 1 is expressible in two ways:
  325 = 17^2 + 6^2 = 15^2 + 10^2.
		

Crossrefs

A300162 Numbers of the form n^2 + 1 that can be expressed as j^2 + k^2, j > k > 1, in more ways than any smaller number of this form.

Original entry on oeis.org

65, 325, 2210, 17425, 58565, 71825, 986050, 2458625, 15657850, 27636050, 205005125, 343842850, 1930020625, 4401924410, 5279766245, 26189596225, 109020153125, 1997821114250, 3001878503650, 5283874574225, 10991001911825, 91178970317825, 253647605037125
Offset: 1

Views

Author

Hugo Pfoertner, Feb 27 2018

Keywords

Examples

			See A300161.
		

Crossrefs

Extensions

a(17) from Hugo Pfoertner, Mar 08 2018
a(18)-a(21) from Robert Price, Mar 10 2018
a(22)-a(23) from Giovanni Resta, Mar 13 2018

A300161 Numbers n such that n^2 + 1 can be expressed as j^2 + k^2, j > k > 1, in more ways than for any smaller n.

Original entry on oeis.org

8, 18, 47, 132, 242, 268, 993, 1568, 3957, 5257, 14318, 18543, 43932, 66347, 72662, 161832, 330182, 1413443, 1732593, 2298668, 3315268, 9548768, 15926318, 24310918, 27028568, 51853693, 162166243, 420024818, 472936732, 599832943, 1892369318
Offset: 1

Views

Author

Hugo Pfoertner, Feb 27 2018

Keywords

Examples

			a(1) = 8: 8^2 + 1 = 65 = 7^2 + 4^2,
a(2) = 18: 18^2 + 1 = 325 = 17^2 + 6^2 = 15^2 + 10^2,
a(3) = 47: 47^2 + 1 = 2210 = 43^2 + 19^2 = 41^2 + 23^2 = 37^2 + 29^2,
a(4) = 132: 132^2 + 1 = 17425 = 129^2 + 28^2 = 127^2 + 36^2 = 120^2 + 55^2 = 116^2 + 63^2 = 105^2 + 80^2.
		

Crossrefs

Extensions

a(17) from Hugo Pfoertner, Mar 08 2018
a(18)-a(21) from Robert Price, Mar 10 2018
a(22)-a(31) from Giovanni Resta, Mar 13 2018
Showing 1-5 of 5 results.