cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A004018 Theta series of square lattice (or number of ways of writing n as a sum of 2 squares). Often denoted by r(n) or r_2(n).

Original entry on oeis.org

1, 4, 4, 0, 4, 8, 0, 0, 4, 4, 8, 0, 0, 8, 0, 0, 4, 8, 4, 0, 8, 0, 0, 0, 0, 12, 8, 0, 0, 8, 0, 0, 4, 0, 8, 0, 4, 8, 0, 0, 8, 8, 0, 0, 0, 8, 0, 0, 0, 4, 12, 0, 8, 8, 0, 0, 0, 0, 8, 0, 0, 8, 0, 0, 4, 16, 0, 0, 8, 0, 0, 0, 4, 8, 8, 0, 0, 0, 0, 0, 8, 4, 8, 0, 0, 16, 0, 0, 0, 8, 8, 0, 0, 0, 0, 0, 0, 8, 4, 0, 12, 8
Offset: 0

Views

Author

Keywords

Comments

Number of points in square lattice on the circle of radius sqrt(n). Equivalently, number of Gaussian integers of norm n (cf. Conway-Sloane, p. 106).
Let b(n)=A004403(n), then Sum_{k=1..n} a(k)*b(n-k) = 1. - John W. Layman
Theta series of D_2 lattice.
Number 6 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
The zeros in this sequence correspond to those integers with an equal number of 4k+1 and 4k+3 divisors, or equivalently to those that have at least one 4k+3 prime factor with an odd exponent (A022544). - Ant King, Mar 12 2013
If A(q) = 1 + 4*q + 4*q^2 + 4*q^4 + 8*q^5 + ... denotes the o.g.f. of this sequence then the function F(q) := 1/4*(A(q^2) - A(q^4)) = ( Sum_{n >= 0} q^(2*n+1)^2 )^2 is the o.g.f. for counting the ways a positive integer n can be written as the sum of two positive odd squares. - Peter Bala, Dec 13 2013
Expansion coefficients of (2/Pi)*K, with the real quarter period K of elliptic functions, as series of the Jacobi nome q, due to (2/Pi)*K = theta_3(0,q)^2. See, e.g., Whittaker-Watson, p. 486. - Wolfdieter Lang, Jul 15 2016
Sum_{k=0..n} a(n) = A057655(n). Robert G. Wilson v, Dec 22 2016
Limit_{n->oo} (a(n)/n - Pi*log(n)) = A062089: Sierpinski's constant. - Robert G. Wilson v, Dec 22 2016
The mean value of a(n) is Pi, see A057655 for more details. - M. F. Hasler, Mar 20 2017

Examples

			G.f. = 1 + 4*q + 4*q^2 + 4*q^4 + 8*q^5 + 4*q^8 + 4*q^9 + 8*q^10 + 8*q^13 + 4*q^16 + 8*q^17 + 4*q^18 + 8*q^20 + 12*q^25 + 8*q^26 + ... . - _John Cannon_, Dec 30 2006
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 162, #16 (7), r(n).
  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 106.
  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 78, Eq. (32.23).
  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 15, p. 32, Lemma 2 (with the proof), p. 116, (9.10) first formula.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 133.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 240, r(n).
  • W. König and J. Sprekels, Karl Weierstraß (1815-1897), Springer Spektrum, Wiesbaden, 2016, p. 186-187 and p. 280-281.
  • C. D. Olds, A. Lax and G. P. Davidoff, The Geometry of Numbers, Math. Assoc. Amer., 2000, p. 51.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 244-245.
  • E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, fourth edition, reprinted, 1958, Cambridge at the University Press.

Crossrefs

Row d=2 of A122141 and of A319574, 2nd column of A286815.
Partial sums - 1 give A014198.
A071385 gives records; A071383 gives where records occur.

Programs

  • Julia
    # JacobiTheta3 is defined in A000122.
    A004018List(len) = JacobiTheta3(len, 2)
    A004018List(102) |> println # Peter Luschny, Mar 12 2018
    
  • Magma
    Basis( ModularForms( Gamma1(4), 1), 100) [1]; /* Michael Somos, Jun 10 2014 */
    
  • Maple
    (sum(x^(m^2),m=-10..10))^2;
    # Alternative:
    A004018list := proc(len) series(JacobiTheta3(0, x)^2, x, len+1);
    seq(coeff(%, x, j), j=0..len-1) end:
    t1 := A004018list(102);
    r2 := n -> t1[n+1]; # Peter Luschny, Oct 02 2018
  • Mathematica
    SquaresR[2,Range[0,110]] (* Harvey P. Dale, Oct 10 2011 *)
    a[ n_] := SquaresR[ 2, n]; (* Michael Somos, Nov 15 2011 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q]^2, {q, 0, n}]; (* Michael Somos, Nov 15 2011 *)
    a[ n_] := With[{m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ EllipticK[ m] / (Pi/2), {q, 0, n}]]; (* Michael Somos, Jun 10 2014 *)
    a[ n_] := If[ n < 1, Boole[n == 0], 4 Sum[ KroneckerSymbol[-4, d], {d, Divisors@n}]]; (* or *) a[ n_] := SeriesCoefficient[ QPochhammer[ q^2]^10/(QPochhammer[ q] QPochhammer[ q^4])^4, {q, 0, n}]; (* Michael Somos, May 17 2015 *)
  • PARI
    {a(n) = polcoeff( 1 + 4 * sum( k=1, n, x^k / (1 + x^(2*k)), x * O(x^n)), n)}; /* Michael Somos, Mar 14 2003 */
    
  • PARI
    {a(n) = if( n<1, n==0, 4 * sumdiv( n, d, (d%4==1) - (d%4==3)))}; /* Michael Somos, Jul 19 2004 */
    
  • PARI
    {a(n) = if( n<1, n==0, 2 * qfrep([ 1, 0; 0, 1], n)[n])}; /* Michael Somos, May 13 2005 */
    
  • PARI
    a(n)=if(n==0,return(1)); my(f=factor(n)); 4*prod(i=1,#f~, if(f[i,1]%4==1, f[i,2]+1, if(f[i,2]%2 && f[i,1]>2, 0, 1))) \\ Charles R Greathouse IV, Sep 02 2015
    
  • Python
    from sympy import factorint
    def a(n):
        if n == 0: return 1
        an = 4
        for pi, ei in factorint(n).items():
           if pi%4 == 1: an *= ei+1
           elif pi%4 == 3 and ei%2: return 0
        return an
    print([a(n) for n in range(102)]) # Michael S. Branicky, Sep 24 2021
    
  • Python
    from math import prod
    from sympy import factorint
    def A004018(n): return prod(1 if p==2 else (e+1 if p&3==1 else (e+1)&1) for p, e in factorint(n).items())<<2 if n else 1 # Chai Wah Wu, Jul 07 2022, corrected Jun 21 2024.
  • Sage
    Q = DiagonalQuadraticForm(ZZ, [1]*2)
    Q.representation_number_list(102) # Peter Luschny, Jun 20 2014
    

Formula

Expansion of theta_3(q)^2 = (Sum_{n=-oo..+oo} q^(n^2))^2 = Product_{m>=1} (1-q^(2*m))^2 * (1+q^(2*m-1))^4; convolution square of A000122.
Factor n as n = p1^a1 * p2^a2 * ... * q1^b1 * q2^b2 * ... * 2^c, where the p's are primes == 1 (mod 4) and the q's are primes == 3 (mod 4). Then a(n) = 0 if any b is odd, otherwise a(n) = 4*(1 + a1)*(1 + a2)*...
G.f. = s(2)^10/(s(1)^4*s(4)^4), where s(k) := subs(q=q^k, eta(q)) and eta(q) is Dedekind's function, cf. A010815. [Fine]
a(n) = 4*A002654(n), n > 0.
Expansion of eta(q^2)^10 / (eta(q) * eta(q^4))^4 in powers of q. - Michael Somos, Jul 19 2004
Expansion of ( phi(q)^2 + phi(-q)^2 ) / 2 in powers of q^2 where phi() is a Ramanujan theta function.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = (u - v)^2 - (v - w) * 4 * w. - Michael Somos, Jul 19 2004
Euler transform of period 4 sequence [4, -6, 4, -2, ...]. - Michael Somos, Jul 19 2004
Moebius transform is period 4 sequence [4, 0, -4, 0, ...]. - Michael Somos, Sep 17 2007
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = 2 (t/i) f(t) where q = exp(2 Pi i t).
The constant sqrt(Pi)/Gamma(3/4)^2 produces the first 324 terms of the sequence when expanded in base exp(Pi), 450 digits of the constant are necessary. - Simon Plouffe, Mar 03 2011
a(n) = A004531(4*n). a(n) = 2*A105673(n), if n>0.
Let s = 16*q*(E1*E4^2/E2^3)^8 where Ek = Product_{n>=1} (1-q^(k*n)) (s=k^2 where k is elliptic k), then the g.f. is hypergeom([+1/2, +1/2], [+1], s) (expansion of 2/Pi*ellipticK(k) in powers of q). - Joerg Arndt, Aug 15 2011
Dirichlet g.f. Sum_{n>=1} a(n)/n^s = 4*zeta(s)*L_(-4)(s), where L is the D.g.f. of the (shifted) A056594. [Raman. J. 7 (2003) 95-127]. - R. J. Mathar, Jul 02 2012
a(n) = floor(1/(n+1)) + 4*floor(cos(Pi*sqrt(n))^2) - 4*floor(cos(Pi*sqrt(n/2))^2) + 8*Sum_{i=1..floor(n/2)} floor(cos(Pi*sqrt(i))^2)*floor(cos(Pi*sqrt(n-i))^2). - Wesley Ivan Hurt, Jan 09 2013
From Wolfdieter Lang, Aug 01 2016: (Start)
A Jacobi identity: theta_3(0, q)^2 = 1 + 4*Sum_{r>=0} (-1)^r*q^(2*r+1)/(1 - q^(2*r+1)). See, e.g., the Grosswald reference (p. 15, p. 116, but p. 32, Lemma 2 with the proof, has the typo r >= 1 instead of r >= 0 in the sum, also in the proof). See the link with the Jacobi-Legendre letter.
Identity used by Weierstraß (see the König-Sprekels book, p. 187, eq. (5.12) and p. 281, with references, but there F(x) from (5.11) on p. 186 should start with nu =1 not 0): theta_3(0, q)^2 = 1 + 4*Sum_{n>=1} q^n/(1 + q^(2*n)). Proof: similar to the one of the preceding Jacobi identity. (End)
a(n) = (4/n)*Sum_{k=1..n} A186690(k)*a(n-k), a(0) = 1. - Seiichi Manyama, May 27 2017
G.f.: Theta_3(q)^2 = hypergeometric([1/2, 1/2],[1],lambda(q)), with lambda(q) = Sum_{j>=1} A115977(j)*q^j. See the Kontsevich and Zagier link, with Theta -> Theta_3, z -> 2*z and q -> q^2. - Wolfdieter Lang, May 27 2018

A071383 Squared radii of the circles around (0,0) that contain record numbers of lattice points.

Original entry on oeis.org

0, 1, 5, 25, 65, 325, 1105, 4225, 5525, 27625, 71825, 138125, 160225, 801125, 2082925, 4005625, 5928325, 29641625, 77068225, 148208125, 243061325, 1215306625, 3159797225, 6076533125, 12882250225, 53716552825, 64411251125
Offset: 1

Views

Author

Hugo Pfoertner, May 23 2002

Keywords

Comments

The number of lattice points (i,j) on the circle with i^2 + j^2 = a(n) is given by A071385(n).
In a sci.math posting on May 05 2002 entitled "Circle with 3 lattice points", James R. Buddenhagen asked: Which circles have the property that they pass through more lattice points than any smaller circle? and he gave the terms 1, 25, 65, 325, 1105, 4225, 5525, with the missing 5 added by Ahmed Fares. In the same thread Gerry Myerson mentioned the factorization into primes of the form 4*k+1.
Also, numbers with a record number of divisors all of whose prime factors are of the form 4k + 1. - Amiram Eldar, Sep 12 2019
Indices of records of A004018. Apart from the first term, also indices of records of A002654. - Jianing Song, May 20 2021

Crossrefs

Cf. A000448, A048610, A052199, A071384, A071385, A230655, A300162. Subsequence of A054994 (excluding first term). Where records occur in A004018. See A088959 for circles with integer radius.
Indices of records of Sum_{d|n} kronecker(m, d): A230655 (m=-3), this sequence (m=-4), A279541 (m=-6).

Programs

  • PARI
    my(v=list(10^15), rec=0); print1(0, ", "); for(n=1, #v, if(numdiv(v[n])>rec, rec=numdiv(v[n]); print1(v[n], ", "))) \\ Jianing Song, May 20 2021, see program for A054994
    
  • Python
    from math import prod
    from sympy import isprime
    primes_congruent_1_mod_4 = [5]
    def prime_4k_plus_1(i): # the i-th prime that is congruent to 1 mod 4
        while i>=len(primes_congruent_1_mod_4): # generate primes on demand
            n = primes_congruent_1_mod_4[-1]+4
            while not isprime(n): n += 4
            primes_congruent_1_mod_4.append(n)
        return primes_congruent_1_mod_4[i]
    def generate_A054994():
        TO_DO = {(1,())}
        while True:
            radius, exponents = min(TO_DO)
            yield radius, exponents
            TO_DO.remove((radius, exponents))
            TO_DO.update(successors(radius,exponents))
    def successors(r,exponents):
        for i,e in enumerate(exponents):
            if i==0 or exponents[i-1]>e:
                yield (r*prime_4k_plus_1(i), exponents[:i]+(e+1,)+exponents[i+1:])
        if exponents==() or exponents[-1]>0:
            yield (r*prime_4k_plus_1(len(exponents)), exponents+(1,))
    n,record,radius=1,1,0
    print(radius, end="") # or record, for A071385
    for radius,expo in generate_A054994():
        num_points = 4*prod((e+1) for e in expo)
        if num_points>record:
            record = num_points
            n += 1
            print (",", radius, end="") # or record, for A071385
            if n==27: break
    print()
    # Günter Rote, Sep 12 2023

Formula

For n>1 we have 1 < a(n+1)/a(n) <= 5, since one can multiply the points x+iy for which x^2 + y^2 = N by either 2+i or 2-i to get two new sets of points X+iY for which X^2 + Y^2 = 5N. This strictly increases the number since it is easy to see that the two sets aren't the same. - J. H. Conway, Jun 04 2002
lim n ->infinity Log(a(n))/n = 1. [Conjectured by Benoit Cloitre, proved by J. H. Conway]

A071339 a(n) = the maximum number of lattice points touched by an origin-centered circle with radius <= n.

Original entry on oeis.org

1, 4, 4, 8, 8, 12, 12, 12, 12, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 36, 36, 36
Offset: 0

Views

Author

Hugo Pfoertner, May 22 2002

Keywords

Examples

			a(5 to 8)=12 because the circle with radius 5 touches 12 lattice points: (+-1,+-2), (+-2,+-1), (+-5,0), (0,+-5); but no circle touches more, until the radius is sqrt(65).
		

Crossrefs

Formula

a(n) = max(i=0 to n^2) A004018(i)

Extensions

Edited by Don Reble, Nov 06 2005

A300163 Records in the number of ways to express a number of the form n^2 + 1 as j^2 + k^2 with j > k > 1.

Original entry on oeis.org

1, 2, 3, 5, 7, 8, 11, 15, 17, 23, 31, 35, 39, 47, 63, 71, 95, 127, 143, 161, 191, 215, 255, 287, 319, 383, 575, 639, 767, 959, 1151
Offset: 1

Views

Author

Hugo Pfoertner, Feb 27 2018

Keywords

Examples

			a(6) = 8 because A300162(6) = A300161(6)^2 + 1 = 71825 is the smallest number expressible in 8 ways: 71825 = 265^2 + 40^2 = 260^2 + 65^2 = 257^2 + 76^2 = 247^2 + 104^2 = 236^2 + 127^2 = 215^2 + 160^2 = 208^2 + 169^2 = 191^2 + 188^2.
		

Crossrefs

Extensions

a(17) from Hugo Pfoertner, Mar 08 2018
a(18)-a(21) from Robert Price, Mar 10 2018
a(22)-a(31) from Giovanni Resta, Mar 13 2018

A071384 Radii of the circles around (0,0) that contain record numbers of lattice points, rounded up to the next integer.

Original entry on oeis.org

0, 1, 3, 5, 9, 19, 34, 65, 75, 167, 269, 372, 401, 896, 1444, 2002, 2435, 5445, 8779, 12175, 15591, 34862, 56213, 77953, 113501, 231769, 253794, 409231, 567501, 886464, 1687299, 1982193, 3196190, 4432317, 7146896, 13178226, 15980946
Offset: 1

Views

Author

Hugo Pfoertner, May 23 2002

Keywords

Comments

a(n)^2 = A071383(n) for a(n) = 1, 5, 65, ... .

Crossrefs

Formula

a(n) = ceiling ( A071383(n)^(1/2) ).

Extensions

Description clarified by Günter Rote, Sep 13 2023

A344470 Record values in A002654.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 20, 24, 32, 36, 40, 48, 64, 72, 80, 96, 128, 144, 160, 192, 216, 256, 288, 320, 384, 432, 512, 576, 640, 768, 864, 960, 1024, 1152, 1280, 1536, 1728, 1920, 2048, 2304, 2560, 2880, 3072, 3456, 3840, 4096, 4608, 5120, 5760, 6144
Offset: 1

Views

Author

Jianing Song, May 20 2021

Keywords

Comments

Also numbers k such that A018782(m) > A018782(k) for all m > k.

Examples

			9 is a term because the circle with radius sqrt(4225) centered at the origin hits exactly 4*9 = 36 integer points, and any circle with radius < sqrt(4225) centered at the origin hits fewer than 36 points.
		

Crossrefs

Records of Sum_{d|n} kronecker(m, d): A344472 (m=-3), this sequence (m=-4), A279542 (m=-6).

Programs

  • PARI
    my(v=list(10^15), rec=0); for(n=1, #v, if(numdiv(v[n])>rec, rec=numdiv(v[n]); print1(rec, ", "))) \\ see program for A054994

Formula

a(n) = A071385(n+1)/4.
a(n) = A000005(A071383(n+1)) = A002654(A071383(n+1)).

A326311 Least numbers k such that A004018(k) is nondecreasing.

Original entry on oeis.org

0, 1, 2, 4, 5, 10, 13, 17, 20, 25, 50, 65, 85, 125, 130, 145, 170, 185, 205, 221, 250, 260, 265, 290, 305, 325, 425, 650, 725, 845, 850, 925, 1025, 1105, 1625, 1885, 2125, 2210, 2405, 2465, 2665, 3145, 3250, 3445, 3485, 3625, 3770, 3965, 4225, 5525
Offset: 1

Views

Author

Hugo Pfoertner, Sep 11 2019

Keywords

Comments

Least squared radius of a circle around a grid point of the square lattice such that the number of grid points on this circle is not smaller than the number of grid points on any circle around a grid point of the square lattice with smaller radius. a(1) = 0 by convention.

Crossrefs

Programs

  • Julia
    using Nemo
    function A326311List(len)
        R, x = PolynomialRing(ZZ, "x")
        e = theta_qexp(2, len, x)
        L = [coeff(e, j) for j in 0:len - 1]
        m = ZZ(0)
        [n - 1 for (n, l) in enumerate(L) if l == (m = max(m, l))]
    end
    A326311List(1000) |> println # Peter Luschny, Sep 12 2019
  • PARI
    r2=0;for(k=0,6000,my(a004018 = if( k<1, k==0, 4 * sumdiv( k, d, (d%4==1) - (d%4==3))));if(a004018>=r2,r2=a004018;print1(k,", ")))
    

A344471 Number of points in the hexagonal lattice A_2 on the circle centered at the origin with squared radius A230655(n).

Original entry on oeis.org

1, 6, 12, 18, 24, 36, 48, 54, 72, 96, 108, 144, 192, 216, 288, 384, 432, 576, 648, 768, 864, 960, 1152, 1296, 1536, 1728, 1920, 2304, 2592, 3072, 3456, 3840, 4608, 5184, 6144, 6912, 7680, 9216, 10368, 12288, 13824, 15360, 18432, 20736, 23040, 24576, 27648
Offset: 1

Views

Author

Jianing Song, May 20 2021

Keywords

Comments

Record values of A004016.

Examples

			24 is a term because the circle with radius sqrt(91) centered at the origin hits exactly 24 points in the A_2 lattice, and any circle with radius < sqrt(91) centered at the origin hits fewer than 24 points.
		

Crossrefs

Cf. A071385 (similar sequence).

Programs

  • PARI
    my(v=list_A344473(10^15), rec=0); print1(1, ", "); for(n=1, #v, if(numdiv(v[n])>rec, rec=numdiv(v[n]); print1(6*rec, ", "))) \\ see program for A344473

Formula

a(n) = A004016(A230655(n)).
a(n) = 6*A000005(A230655(n)) = 6*A002324(A230655(n)), n > 1.

A072324 Terms of A071383 such that A071383(n) = 5 * A071383(n-1).

Original entry on oeis.org

5, 25, 325, 27625, 801125, 29641625, 1215306625
Offset: 1

Views

Author

Hugo Pfoertner, Jul 14 2002

Keywords

Comments

This sequence was proposed by Benoit Cloitre.
The next term of this sequence if it exists is greater than 2^63-1 (~9.2*10^18).
No more terms through A071383(365). - Hugo Pfoertner, Sep 12 2019
No more terms through A071383(425). - Ray Chandler, Dec 18 2019

Crossrefs

Cf. A071383.

A365620 Number of integer grid points on the circle around (0,0) with radius A088959(n).

Original entry on oeis.org

4, 12, 20, 36, 60, 108, 180, 252, 324, 540, 756, 972, 1620, 2268, 2916, 4860, 6804, 8748, 14580, 20412, 26244, 43740, 61236, 72900, 78732, 102060, 131220, 183708, 218700, 236196, 306180, 393660, 551124, 656100, 708588, 918540
Offset: 1

Views

Author

Günter Rote, Sep 12 2023

Keywords

Crossrefs

Sequence of records of A046109 (first term 1 from A046109 is omitted).
See A071385 for radii that are not necessarily integers.

Formula

a(n) = 8*A088111(n) + 4.
Showing 1-10 of 10 results.