A299731 Number of partitions of 3*n that have exactly n prime parts.
1, 2, 3, 5, 8, 12, 18, 25, 35, 50, 69, 93, 126, 167, 220, 290, 377, 486, 627, 800, 1017, 1290, 1623, 2032, 2542, 3161, 3917, 4843, 5960, 7312, 8957, 10925, 13291, 16139, 19534, 23588, 28437, 34180, 41000, 49099, 58657, 69941, 83269, 98917, 117314, 138930
Offset: 0
Keywords
Examples
For n = 3: the five partitions of 3 * 3 = 9 that have exactly three prime parts are (5, 2, 2), (3, 3, 3), (3, 3, 2, 1), (3, 2, 2, 1, 1), and (2, 2, 2, 1, 1, 1), so a(3) = 5.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2000
- J. Kelleher, B. O'Sullivan, Generating All Partitions: A Comparison Of Two Encodings, arXiv:0909.2331 [cs.DS], 2009, 2014.
- J. Stauduhar, Python program
Programs
-
Mathematica
zip[f_, x_, y_, z_] := With[{m = Max[Length[x], Length[y]]}, Thread[f[ PadRight[x, m, z], PadRight[y, m, z]]]]; b[n_, i_] := b[n, i] = Module[{j, pc}, Which[n == 0, {1}, i < 1, {0}, True, pc = {}; For[j = 0, j <= n/i, j++, pc = zip[Plus, pc, Join[If[PrimeQ[i], Array[0 &, j], {}], b[n - i*j, i - 1]], 0]]; pc]]; a[n_] := b[3 n, 3 n][[n + 1]]; Table[a[n], {n, 0, 45}] (* Jean-François Alcover, Mar 16 2018, after Alois P. Heinz *)
-
PARI
a(n) = {my(nb = 0); forpart(p=3*n, if (sum(k=1, #p, isprime(p[k])) == n, nb++);); nb;} \\ Michel Marcus, Mar 22 2018
-
Python
See Stauduhar link.
Formula
a(n) = A222656(3*n,n).
Comments