A299765 Irregular triangle read by rows, T(n,k), n >= 1, k >= 1, in which row n lists the partitions of n into consecutive parts, with the partitions ordered by increasing number of parts.
1, 2, 3, 2, 1, 4, 5, 3, 2, 6, 3, 2, 1, 7, 4, 3, 8, 9, 5, 4, 4, 3, 2, 10, 4, 3, 2, 1, 11, 6, 5, 12, 5, 4, 3, 13, 7, 6, 14, 5, 4, 3, 2, 15, 8, 7, 6, 5, 4, 5, 4, 3, 2, 1, 16, 17, 9, 8, 18, 7, 6, 5, 6, 5, 4, 3, 19, 10, 9, 20, 6, 5, 4, 3, 2, 21, 11, 10, 8, 7, 6, 6, 5, 4, 3, 2, 1, 22, 7, 6, 5, 4, 23, 12, 11
Offset: 1
Examples
Triangle begins: [1]; [2]; [3], [2, 1]; [4]; [5], [3, 2]; [6], [3, 2, 1]; [7], [4, 3]; [8]; [9], [5, 4], [4, 3, 2]; [10], [4, 3, 2, 1]; [11], [6, 5]; [12], [5, 4, 3]; [13], [7, 6]; [14], [5, 4, 3, 2]; [15], [8, 7], [6, 5, 4], [5, 4, 3, 2, 1]; [16]; [17], [9, 8]; [18], [7, 6, 5], [6, 5, 4, 3]; [19], [10, 9]; [20], [6, 5, 4, 3, 2]; [21], [11, 10], [8, 7, 6], [6, 5, 4, 3, 2, 1]; [22], [7, 6, 5, 4]; [23], [12, 11]; [24], [9, 8, 7]; [25], [13, 12], [7, 6, 5, 4, 3]; [26], [8, 7, 6, 5]; [27], [14, 13], [10, 9, 8], [7, 6, 5, 4, 3, 2]; [28], [7, 6, 5, 4, 3, 2, 1]; ... Note that in the below diagram the number of horizontal line segments in the n-th row equals A001227(n), the number of partitions of n into consecutive parts, so we can find the partitions of n into consecutive parts as follows: consider the vertical blocks of numbers that start exactly in the n-th row of the diagram, for example: for n = 15 consider the vertical blocks of numbers that start exactly in the 15th row. They are [15], [8, 7], [6, 5, 4] and [5, 4, 3, 2, 1], equaling the 15th row of the above triangle. . _ . _|1| . _|2 _| . _|3 |2| . _|4 _|1| . _|5 |3 _| . _|6 _|2|3| . _|7 |4 |2| . _|8 _|3 _|1| . _|9 |5 |4 _| . _|10 _|4 |3|4| . _|11 |6 _|2|3| . _|12 _|5 |5 |2| . _|13 |7 |4 _|1| . _|14 _|6 _|3|5 _| . _|15 |8 |6 |4|5| . _|16 _|7 |5 |3|4| . _|17 |9 _|4 _|2|3| . _|18 _|8 |7 |6 |2| . _|19 |10 |6 |5 _|1| . _|20 _|9 _|5 |4|6 _| . _|21 |11 |8 _|3|5|6| . _|22 _|10 |7 |7 |4|5| . _|23 |12 _|6 |6 |3|4| . _|24 _|11 |9 |5 _|2|3| . _|25 |13 |8 _|4|7 |2| . _|26 _|12 _|7 |8 |6 _|1| . _|27 |14 |10 |7 |5|7 _| . |28 |13 |9 |6 |4|6|7| ... The diagram is infinite. For more information about the diagram see A286000. For an amazing connection with sum of divisors function (A000203) see A237593.
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10350 (rows 1..500 of triangle, flattened)
Crossrefs
Programs
-
Mathematica
intervals[n_]:=Module[{x,y},SolveValues[(x^2-y^2+x+y)/2==n&&0
A299765row[n_]:=Flatten[SortBy[Map[Range[First[#],Last[#],-1]&,intervals[n]],Length]]; nrows=25;Array[A299765row,nrows] (* Paolo Xausa, Jun 19 2022 *) -
PARI
iscons(p) = my(v = vector(#p-1, k, p[k+1] - p[k])); v == vector(#p-1, i, 1); row(n) = my(list = List()); forpart(p=n, if (iscons(p), listput(list, Vecrev(p)));); Vec(list); \\ Michel Marcus, May 11 2022
Extensions
Name clarified by Omar E. Pol, May 11 2022
Comments