cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A309598 Number of extended self-orthogonal diagonal Latin squares of order n with the first row in ascending order.

Original entry on oeis.org

1, 0, 0, 2, 4, 0, 256, 4608, 24437088, 510566400
Offset: 1

Views

Author

Eduard I. Vatutin, Aug 09 2019

Keywords

Comments

A self-orthogonal diagonal Latin square (SODLS) is a diagonal Latin square orthogonal to its transpose. An extended self-orthogonal diagonal Latin square (ESODLS) is a diagonal Latin square that has an orthogonal diagonal Latin square from the same main class. SODLS is a special case of ESODLS.
A333367(n) <= A287761(n) <= a(n) <= A305570(n). - Eduard I. Vatutin, Jun 07 2020
a(10) >= 510566400. - Eduard I. Vatutin, Jul 10 2020

Examples

			The diagonal Latin square
  0 1 2 3 4 5 6 7 8 9
  1 2 0 4 5 7 9 8 6 3
  5 0 1 6 3 9 8 2 4 7
  9 3 5 8 2 1 7 4 0 6
  4 6 3 5 7 8 0 9 2 1
  8 4 6 9 1 3 2 5 7 0
  7 8 9 0 6 4 5 1 3 2
  2 9 4 7 8 0 3 6 1 5
  6 5 7 1 0 2 4 3 9 8
  3 7 8 2 9 6 1 0 5 4
has orthogonal diagonal Latin square
  0 1 2 3 4 5 6 7 8 9
  3 5 9 8 6 2 0 1 4 7
  4 3 8 7 2 1 9 0 5 6
  6 9 3 4 8 0 1 2 7 5
  7 2 0 1 9 3 5 8 6 4
  2 0 1 5 7 6 4 9 3 8
  8 6 4 2 0 9 7 5 1 3
  1 7 6 0 5 4 8 3 9 2
  9 8 5 6 1 7 3 4 2 0
  5 4 7 9 3 8 2 6 0 1
from the same main class.
		

Crossrefs

Formula

From Eduard I. Vatutin, Feb 25 2020: (Start)
a(n) = A287761(n) for 1 <= n <= 6.
a(n) = 4*A287761(n) for 7 <= n <= 8. (End)
a(10) = A309210(10)*A299784(10) because no DSODLS exist for order n=10 and no ESODLS of order n=10 have generalized M-symmetries (automorphisms). - Eduard I. Vatutin, Jul 10 2020

Extensions

a(9) calculated by Eduard I. Vatutin, Dec 08 2020, independently checked by Oleg S. Zaikin, Dec 16 2024, added by Eduard I. Vatutin, Jan 30 2025
a(10) added by Eduard I. Vatutin, Oleg S. Zaikin, Jan 30 2025

A287761 Number of self-orthogonal diagonal Latin squares of order n with the first row in ascending order.

Original entry on oeis.org

1, 0, 0, 2, 4, 0, 64, 1152, 224832, 234255360
Offset: 1

Views

Author

Eduard I. Vatutin, May 31 2017

Keywords

Comments

A self-orthogonal diagonal Latin square is a diagonal Latin square orthogonal to its transpose.
A333367(n) <= a(n) <= A309598(n) <= A305570(n). - Eduard I. Vatutin, Apr 26 2020

Examples

			0 1 2 3 4 5 6 7 8 9
5 2 0 9 7 8 1 4 6 3
9 5 7 1 8 6 4 3 0 2
7 8 6 4 9 2 5 1 3 0
8 9 5 0 3 4 2 6 7 1
3 6 9 5 2 1 7 0 4 8
4 3 1 7 6 0 8 2 9 5
6 7 8 2 5 3 0 9 1 4
2 0 4 6 1 9 3 8 5 7
1 4 3 8 0 7 9 5 2 6
		

Crossrefs

Formula

a(n) = A287762(n)/n!.
From Eduard I. Vatutin, Mar 14 2020: (Start)
a(i) != A329685(i)*A299784(i)/2 for i=1..9 due to the existence of doubly self-orthogonal diagonal Latin square (DSODLS) and/or generalized symmetries (automorphisms) for some SODLS.
a(10) = A329685(10)*A299784(10)/2 because no DSODLS exist for order n=10 and no SODLS of order n=10 have generalized symmetries (automorphisms). (End)

Extensions

a(10) from Eduard I. Vatutin, Mar 14 2020
a(10) corrected by Eduard I. Vatutin, Apr 24 2020

A299783 Minimum size of a main class for diagonal Latin squares of order n with the first row in ascending order.

Original entry on oeis.org

1, 0, 0, 2, 4, 32, 32, 96
Offset: 1

Views

Author

Eduard I. Vatutin, Jan 21 2019

Keywords

Comments

a(9) <= 48; a(10) <= 1536, a(11) <= 1536, a(12) <= 46080, a(13) <= 7680. - Eduard I. Vatutin, Oct 05 2020, updated Apr 08 2025

Examples

			From _Eduard I. Vatutin_, Oct 05 2020: (Start)
The following DLS of order 9 has a main class with cardinality 48:
  0 1 2 3 4 5 6 7 8
  2 4 3 0 7 6 8 1 5
  6 2 8 5 3 4 7 0 1
  4 6 7 1 8 2 3 5 0
  1 5 4 7 6 0 2 8 3
  7 8 1 4 5 3 0 6 2
  3 7 0 2 1 8 5 4 6
  8 3 5 6 0 7 1 2 4
  5 0 6 8 2 1 4 3 7
The following DLS of order 10 has a main class with cardinality 7680:
  0 1 2 3 4 5 6 7 8 9
  1 2 0 4 3 6 5 9 7 8
  2 0 3 5 8 1 4 6 9 7
  4 6 9 7 1 8 2 0 3 5
  9 7 8 6 5 4 3 1 2 0
  3 4 7 8 0 9 1 2 5 6
  6 9 4 1 7 2 8 5 0 3
  7 8 5 0 6 3 9 4 1 2
  5 3 1 9 2 7 0 8 6 4
  8 5 6 2 9 0 7 3 4 1
(End)
		

Crossrefs

Formula

a(n) = A299785(n) / n!.
0 <= a(n) <= A299784(n). - Eduard I. Vatutin, Jun 08 2020
From Eduard I. Vatutin, added May 30 2021, updated Apr 08 2025: (Start)
a(n) = A299784(n) for 1 <= n <= 5.
a(6)*3 = A299784(6).
a(7)*6 = A299784(7).
a(8)*16 = A299784(8).
a(9)*32 <= A299784(9).
a(10)*10 <= A299784(10).
a(11)*10 <= A299784(11).
a(12)*4 <= A299784(12).
a(13)*24 <= A299784(13). (End)

A299787 Maximum size of a main class for diagonal Latin squares of order n.

Original entry on oeis.org

1, 0, 0, 48, 480, 69120, 967680, 61931520, 557383680, 55738368000, 613122048000, 88289574912000, 1147764473856000, 224961836875776000, 3374427553136640000
Offset: 1

Views

Author

Eduard I. Vatutin, Jan 21 2019

Keywords

Comments

a(n) <= 2^m * m! * 4 * n!, where m = floor(n/2).
It seems that a(n) = 2^m * m! * 4 * n! for all n>6. - Eduard I. Vatutin, Jun 08 2020
0 <= A299785(n) <= a(n). - Eduard I. Vatutin, Jul 06 2020

Examples

			From _Eduard I. Vatutin_, May 31 2021: (Start)
The following DLS of order 9 has a main class with cardinality 1536*9! = 557383680:
  0 1 2 3 4 5 6 7 8
  1 2 0 4 8 6 5 3 7
  7 4 5 8 0 3 2 6 1
  5 8 7 6 1 0 3 2 4
  8 0 3 2 7 1 4 5 6
  3 7 8 5 6 4 1 0 2
  6 3 1 7 5 2 8 4 0
  2 6 4 0 3 8 7 1 5
  4 5 6 1 2 7 0 8 3
The following DLS of order 10 has a main class with cardinality 15360*10! = 55738368000:
  0 1 2 3 4 5 6 7 8 9
  1 2 0 4 5 3 9 8 6 7
  3 5 6 1 8 7 4 0 9 2
  9 4 7 8 3 2 1 6 0 5
  2 7 3 0 9 8 5 1 4 6
  6 8 5 9 2 4 7 3 1 0
  4 6 9 7 0 1 3 2 5 8
  7 0 4 6 1 9 8 5 2 3
  8 3 1 5 6 0 2 9 7 4
  5 9 8 2 7 6 0 4 3 1
(End)
		

Crossrefs

Formula

a(n) = A299784(n) * n!.
From Eduard I. Vatutin, May 31 2021: (Start)
a(n) = A299785(n) for 1 <= n <= 5.
a(6) = A299785(6)*3.
a(7) = A299785(7)*6.
a(8) = A299785(8)*16.
a(9) = A299785(9)*32.
a(10) = A299785(10)*2.
a(11) = A299785(11)*10.
a(12) = A299785(12)*4.
a(13) = A299785(13)*24. (End)

Extensions

a(9)-a(10) from Eduard I. Vatutin, Mar 15 2020
a(11)-a(15) from Eduard I. Vatutin, Jun 08 2020

A299785 Minimum size of a main class for diagonal Latin squares of order n.

Original entry on oeis.org

1, 0, 0, 48, 480, 23040, 161280, 3870720
Offset: 1

Views

Author

Eduard I. Vatutin, Jan 21 2019

Keywords

Comments

0 <= a(n) <= A299787(n). - Eduard I. Vatutin, Jun 08 2020
a(9) <= 17418240; a(10) <= 27869184000. - Eduard I. Vatutin, Oct 05 2020
a(11) <= 61312204800, a(12) <= 22072393728000, a(13) <= 47823519744000. - Eduard I. Vatutin, May 31 2021

Examples

			From _Eduard I. Vatutin_, Oct 05 2020: (Start)
The following DLS of order 9 has a main class with cardinality 48*9! = 17418240:
  0 1 2 3 4 5 6 7 8
  2 4 3 0 7 6 8 1 5
  6 2 8 5 3 4 7 0 1
  4 6 7 1 8 2 3 5 0
  1 5 4 7 6 0 2 8 3
  7 8 1 4 5 3 0 6 2
  3 7 0 2 1 8 5 4 6
  8 3 5 6 0 7 1 2 4
  5 0 6 8 2 1 4 3 7
The following DLS of order 10 has a main class with cardinality 7680*10! = 27869184000:
  0 1 2 3 4 5 6 7 8 9
  1 2 0 4 3 6 5 9 7 8
  2 0 3 5 8 1 4 6 9 7
  4 6 9 7 1 8 2 0 3 5
  9 7 8 6 5 4 3 1 2 0
  3 4 7 8 0 9 1 2 5 6
  6 9 4 1 7 2 8 5 0 3
  7 8 5 0 6 3 9 4 1 2
  5 3 1 9 2 7 0 8 6 4
  8 5 6 2 9 0 7 3 4 1
(End)
		

Crossrefs

Formula

a(n) = A299783(n) * n!.
From Eduard I. Vatutin, May 31 2021: (Start)
a(n) = A299787(n) for 1 <= n <= 5.
a(6) = A299787(6)/3.
a(7) = A299787(7)/6.
a(8) = A299787(8)/16.
a(9) = A299787(9)/32.
a(10) = A299787(10)/2.
a(11) = A299787(11)/10.
a(12) = A299787(12)/4.
a(13) = A299787(13)/24. (End)
Showing 1-5 of 5 results.