A299785 Minimum size of a main class for diagonal Latin squares of order n.
1, 0, 0, 48, 480, 23040, 161280, 3870720
Offset: 1
Examples
From _Eduard I. Vatutin_, Oct 05 2020: (Start) The following DLS of order 9 has a main class with cardinality 48*9! = 17418240: 0 1 2 3 4 5 6 7 8 2 4 3 0 7 6 8 1 5 6 2 8 5 3 4 7 0 1 4 6 7 1 8 2 3 5 0 1 5 4 7 6 0 2 8 3 7 8 1 4 5 3 0 6 2 3 7 0 2 1 8 5 4 6 8 3 5 6 0 7 1 2 4 5 0 6 8 2 1 4 3 7 The following DLS of order 10 has a main class with cardinality 7680*10! = 27869184000: 0 1 2 3 4 5 6 7 8 9 1 2 0 4 3 6 5 9 7 8 2 0 3 5 8 1 4 6 9 7 4 6 9 7 1 8 2 0 3 5 9 7 8 6 5 4 3 1 2 0 3 4 7 8 0 9 1 2 5 6 6 9 4 1 7 2 8 5 0 3 7 8 5 0 6 3 9 4 1 2 5 3 1 9 2 7 0 8 6 4 8 5 6 2 9 0 7 3 4 1 (End)
Links
- E. I. Vatutin, Discussion about properties of diagonal Latin squares at forum.boinc.ru (in Russian).
- E. I. Vatutin, About the upper bound of the minimal size of main class for diagonal Latin squares of order 9 (in Russian).
- E. I. Vatutin, About the upper bound of the minimal size of main class for diagonal Latin squares of order 10 (in Russian).
- E. Vatutin, A. Belyshev, S. Kochemazov, O. Zaikin, N. Nikitina, Enumeration of isotopy classes of diagonal Latin squares of small order using volunteer computing, Supercomputing Days Russia 2018, Moscow, Moscow State University, 2018, pp. 933-942.
- E. Vatutin, A. Belyshev, S. Kochemazov, O. Zaikin, N. Nikitina, Enumeration of isotopy classes of diagonal Latin squares of small order using volunteer computing, Communications in Computer and Information Science. Vol. 965. Springer, 2018. pp. 578-586.
- Eduard I. Vatutin, About the relationship between the minimal and maximal cardinality of main classes for diagonal Latin squares (in Russian).
- Eduard I. Vatutin, Proving list (best known examples).
- Index entries for sequences related to Latin squares and rectangles.
Comments