A299913 a(n) = a(n-1) + 2*a(n-2) if n even, or 3*a(n-1) + 4*a(n-2) if n odd, starting with 0, 1.
0, 1, 1, 7, 9, 55, 73, 439, 585, 3511, 4681, 28087, 37449, 224695, 299593, 1797559, 2396745, 14380471, 19173961, 115043767, 153391689, 920350135, 1227133513, 7362801079, 9817068105, 58902408631, 78536544841, 471219269047, 628292358729, 3769754152375, 5026338869833
Offset: 0
References
- Murat Sahin and Elif Tan, Conditional (strong) divisibility sequences, Fib. Q., 56 (No. 1, 2018), 18-31.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (-1,8,8)
Programs
-
Maple
a:= n-> (<<0|1|0>, <0|0|1>, <8|8|-1>>^n. <<0, 1, 1>>)[1,1]: seq(a(n), n=0..35); # Alois P. Heinz, Mar 10 2018
-
Mathematica
Fold[Append[#1, Inner[Times, 2 Boole[OddQ@ #2] + {1, 2}, {#1[[-1]], #1[[-2]]}, Plus]] &, {0, 1}, Range[2, 30]] (* or *) CoefficientList[Series[-x (2 x + 1)/((x + 1) (8 x^2 - 1)), {x, 0, 30}], x] (* Michael De Vlieger, Mar 10 2018 *) nxt[{n_,a_,b_}]:={n+1,b,If[OddQ[n],b+2a,3b+4a]}; NestList[nxt,{1,0,1},30][[;;,2]] (* Harvey P. Dale, Mar 02 2025 *)
-
PARI
concat(0, Vec(x*(1 + 2*x) / ((1 + x)*(1 - 8*x^2)) + O(x^40))) \\ Colin Barker, Mar 11 2018
Formula
G.f.: -x*(2*x+1)/((x+1)*(8*x^2-1)). - Alois P. Heinz, Mar 10 2018
From Colin Barker, Mar 11 2018: (Start)
a(n) = (2^(3*n/2) - 1) / 7 for n even.
a(n) = 3*2^((3*(n-1))/2+1)/7 + 1/7 for n odd.
a(n) = -a(n-1) + 8*a(n-2) + 8*a(n-3) for n>2.
(End)
Extensions
More terms from Altug Alkan, Mar 10 2018