cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299918 Motzkin numbers (A001006) mod 8.

Original entry on oeis.org

1, 1, 2, 4, 1, 5, 3, 7, 3, 3, 4, 6, 7, 3, 2, 4, 3, 3, 6, 4, 3, 7, 7, 7, 5, 5, 4, 2, 1, 5, 3, 7, 3, 3, 6, 4, 3, 7, 1, 5, 1, 1, 4, 2, 5, 1, 4, 6, 5, 5, 2, 4, 5, 1, 1, 1, 3, 3, 4, 6, 7, 3, 2, 4, 3, 3, 6, 4, 3, 7, 1, 5, 1, 1, 4, 2, 5, 1, 6, 4, 1, 1, 2, 4, 1
Offset: 0

Views

Author

N. J. A. Sloane, Mar 16 2018

Keywords

Crossrefs

Motzkin numbers A001006 read mod 2,3,4,5,6,7,8,11: A039963, A039964, A299919, A258712, A299920, A258711, A299918, A258710.

Programs

  • Maple
    f:= rectoproc({(3+3*n)*a(n)+(5+2*n)*a(1+n)+(-4-n)*a(n+2), a(0) = 1, a(1) = 1}, a(n), remember): seq(f(n) mod 8, n=0..200); # Robert Israel, Mar 16 2018
  • Mathematica
    Table[Mod[GegenbauerC[n, -n - 1, -1/2] / (n + 1), 8], {n, 0, 100}] (* Vincenzo Librandi, Sep 08 2018 *)
  • PARI
    catalan(n) = binomial(2*n, n)/(n+1);
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*catalan(k+1)) % 8; \\ Michel Marcus, May 23 2022