A299918 Motzkin numbers (A001006) mod 8.
1, 1, 2, 4, 1, 5, 3, 7, 3, 3, 4, 6, 7, 3, 2, 4, 3, 3, 6, 4, 3, 7, 7, 7, 5, 5, 4, 2, 1, 5, 3, 7, 3, 3, 6, 4, 3, 7, 1, 5, 1, 1, 4, 2, 5, 1, 4, 6, 5, 5, 2, 4, 5, 1, 1, 1, 3, 3, 4, 6, 7, 3, 2, 4, 3, 3, 6, 4, 3, 7, 1, 5, 1, 1, 4, 2, 5, 1, 6, 4, 1, 1, 2, 4, 1
Offset: 0
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
- S.-P. Eu, S.-C. Liu, and Y.-N. Yeh, Catalan and Motzkin numbers modulo 4 and 8, Europ. J. Combin. 29 (2008), 1449-1466.
- Christian Krattenthaler and Thomas W. Müller, Motzkin numbers and related sequences modulo powers of 2, arXiv:1608.05657 [math.CO], 2016-2018.
- E. Rowland and R. Yassawi, Automatic congruences for diagonals of rational functions, J. Théorie Nombres Bordeaux 27 (2015), 245-288.
- Ying Wang and Guoce Xin, A Classification of Motzkin Numbers Modulo 8, Electron. J. Combin., 25(1) (2018), #P1.54.
Crossrefs
Programs
-
Maple
f:= rectoproc({(3+3*n)*a(n)+(5+2*n)*a(1+n)+(-4-n)*a(n+2), a(0) = 1, a(1) = 1}, a(n), remember): seq(f(n) mod 8, n=0..200); # Robert Israel, Mar 16 2018
-
Mathematica
Table[Mod[GegenbauerC[n, -n - 1, -1/2] / (n + 1), 8], {n, 0, 100}] (* Vincenzo Librandi, Sep 08 2018 *)
-
PARI
catalan(n) = binomial(2*n, n)/(n+1); a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*catalan(k+1)) % 8; \\ Michel Marcus, May 23 2022