A299965 Number of triangles in a Star of David of size n.
0, 20, 118, 354, 788, 1480, 2490, 3878, 5704, 8028, 10910, 14410, 18588, 23504, 29218, 35790, 43280, 51748, 61254, 71858, 83620, 96600, 110858, 126454, 143448, 161900, 181870, 203418, 226604, 251488, 278130, 306590, 336928, 369204, 403478, 439810, 478260, 518888
Offset: 0
Examples
For n=1, there are 12 (size=1) + 6 (size=4) + 2 (size=9) = 20 triangles.
Links
- Paolo Xausa, Table of n, a(n) for n = 0..10000 (corrected and extended original b-file from Colin Barker after data change).
- John King, Star a=6, 84 matches, 118 triangles
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Mathematica
A299965[n_] := n*(n*(10*n + 9) + 1); Array[A299965, 50, 0] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 20, 118, 354}, 50] (* Paolo Xausa, Sep 18 2024 *)
-
PARI
concat(0, Vec(2*x*(10 + 19*x + x^2) / (1 - x)^4 + O(x^40))) \\ Colin Barker, Apr 04 2019
Formula
a(n) = n*(10*n^2+9*n+1) = 2*A045950(n).
From Colin Barker, Apr 04 2019: (Start)
G.f.: 2*x*(10 + 19*x + x^2) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3. (End)
E.g.f.: exp(x)*x*(20 + 39*x + 10*x^2). - Stefano Spezia, Sep 20 2024
Comments