A302781 Divisor-or-multiple permutation of natural numbers constructed from two-dimensional Hilbert curve (A163357) and Fermi-Dirac primes (A050376).
1, 2, 6, 3, 15, 5, 10, 30, 120, 40, 20, 60, 12, 24, 8, 4, 28, 84, 168, 56, 14, 7, 21, 42, 210, 105, 35, 70, 280, 840, 420, 140, 1260, 3780, 7560, 2520, 630, 315, 945, 1890, 378, 189, 63, 126, 504, 1512, 756, 252, 36, 72, 216, 108, 540, 180, 360, 1080, 270, 90, 45, 135, 27, 54, 18, 9, 117, 351, 702, 234, 936, 468
Offset: 0
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 0..16383
- Pierre Mazet and Eric Saias, Etude du graphe divisoriel 4, arXiv:1803.10073 [math.NT], 2018.
- Various, Discussion on SeqFan-list, April 2018.
- Index entries for sequences that are permutations of the natural numbers
Crossrefs
Programs
-
PARI
up_to_e = 14; v050376 = vector(up_to_e); A050376(n) = v050376[n]; ispow2(n) = (n && !bitand(n,n-1)); i = 0; for(n=1,oo,if(ispow2(isprimepower(n)), i++; v050376[i] = n); if(i == up_to_e,break)); A052330(n) = { my(p=1,i=1); while(n>0, if(n%2, p *= A050376(i)); i++; n >>= 1); (p); }; A064706(n) = bitxor(n, n>>2); A057300(n) = { my(t=1,s=0); while(n>0, if(1==(n%4),n++,if(2==(n%4),n--)); s += (n%4)*t; n >>= 2; t <<= 2); (s); }; A163356(n) = if(!n,n,my(i = (#binary(n)-1)\2, f = 4^i, d = (n\f)%4, r = (n%f)); (((((2+(i%2))^d)%5)-1)*f) + if(3==d,f-1-A163356(r),A057300(A163356(r)))); A302781(n) = A052330(A064706(A163356(n)));
Formula
Extensions
Name edited by Antti Karttunen, Aug 26 2018
Comments