A300074 Decimal expansion of 1/(2*sin(Pi/5)) = A121570/2.
8, 5, 0, 6, 5, 0, 8, 0, 8, 3, 5, 2, 0, 3, 9, 9, 3, 2, 1, 8, 1, 5, 4, 0, 4, 9, 7, 0, 6, 3, 0, 1, 1, 0, 7, 2, 2, 4, 0, 4, 0, 1, 4, 0, 3, 7, 6, 4, 8, 1, 6, 8, 8, 1, 8, 3, 6, 7, 4, 0, 2, 4, 2, 3, 7, 7, 8, 8, 4, 0, 4, 7, 3, 6, 3, 9, 5, 8, 9, 6, 6, 6, 9, 4, 3, 2, 0, 3, 6, 4, 2, 7, 8, 5, 1, 7, 6
Offset: 0
Examples
r/s = 0.850650808352039932181540497063011072240401403764816881836740242377... 2*r/s = A121570.
Links
- Muniru A Asiru, Table of n, a(n) for n = 0..2000
- Wikipedia, Schur decomposition.
- Index entries for algebraic numbers, degree 4.
Programs
-
Mathematica
RealDigits[1/(2 Sin[Pi/5]), 10, 111][[1]] (* Robert G. Wilson v, Jul 15 2018 *)
-
PARI
1/(2*sin(Pi/5)) \\ Charles R Greathouse IV, Mar 04 2018
-
PARI
sqrt((5+sqrt(5))/10) \\ Charles R Greathouse IV, Mar 04 2018
Formula
r/s = 1/A182007 = A121570/2 = (2*phi - 1)*sqrt(2 + phi)/5, with the golden ratio phi = (1 + sqrt(5))/2 = A001622.
From Amiram Eldar, Feb 08 2022: (Start)
Equals cos(arccot(phi)) = cos(arctan(1/phi)) = cos(A195693).
Equals sin(arctan(phi)) = sin(arccot(1/phi)) = sin(A195723). (End)
Equals Product_{k>=1} (1 + (-1)^k/A090773(k)). - Amiram Eldar, Nov 23 2024
Comments