A300153 Square array T(n, k) read by antidiagonals upwards, n > 0 and k > 0: T(n, k) is the number of parts inscribed in a rose or rhodonea curve with polar coordinates r = cos(t * (k/n)).
1, 4, 4, 2, 1, 3, 8, 12, 12, 8, 3, 4, 1, 4, 5, 12, 20, 24, 24, 20, 12, 4, 2, 9, 1, 10, 3, 7, 16, 28, 4, 40, 40, 4, 28, 16, 5, 8, 12, 12, 1, 12, 14, 8, 9, 20, 36, 48, 56, 60, 60, 56, 48, 36, 20, 6, 3, 2, 4, 20, 1, 21, 4, 3, 5, 11, 24, 44, 60, 72, 80, 84, 84, 80
Offset: 1
Examples
Array T(n, k) begins: n\k| 1 2 3 4 5 6 7 8 9 ---+--------------------------------------------- 1| 1 4 3 8 5 12 7 16 9 2| 4 1 12 4 20 3 28 8 36 3| 2 12 1 24 10 4 14 48 3 4| 8 4 24 1 40 12 56 4 72 5| 3 20 9 40 1 60 21 80 27 6| 12 2 4 12 60 1 84 24 12 7| 4 28 12 56 20 84 1 112 36 8| 16 8 48 4 80 24 112 1 144 9| 5 36 2 72 25 12 35 144 1 10| 20 3 60 20 4 9 140 40 180 11| 6 44 18 88 30 132 42 176 54 ... The following diagram shows the curve for T(2, 1) and the corresponding 4 parts: | ######## ######## ##### ####### ##### ### ### ### ### ### ## | ## ### ## ## ## ## ## # Part #2 # ## ## ## ## ## # ### | ### # -#- - - Part #3 - -#######- - Part #1 - - -#- # ### | ### # ## ## ## ## ## # Part #4 # ## ## ## ## ## ### ## | ## ### ### ### ### ### ##### ####### ##### ######## ######## |
Links
- Rémy Sigrist, Illustration of the first terms
- Eric Weisstein's World of Mathematics, Rose
- Wikipedia, Rose (mathematics)
Formula
T(1, k) = A022998(k).
T(n, k) = T(n/gcd(n, k), k/gcd(n, k)).
Empirically, when gcd(n, k) = 1, we have the following formulas depending on the parity of n and of k:
| k is odd | k is even
----------+--------------------------------+--------------------
n is odd | T(n, k) = k * A029578(n+1) | T(n, k) = 2 * k * n
n is even | T(n, k) = 2 * k * A029578(n+1) | N/A
Comments