cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300153 Square array T(n, k) read by antidiagonals upwards, n > 0 and k > 0: T(n, k) is the number of parts inscribed in a rose or rhodonea curve with polar coordinates r = cos(t * (k/n)).

Original entry on oeis.org

1, 4, 4, 2, 1, 3, 8, 12, 12, 8, 3, 4, 1, 4, 5, 12, 20, 24, 24, 20, 12, 4, 2, 9, 1, 10, 3, 7, 16, 28, 4, 40, 40, 4, 28, 16, 5, 8, 12, 12, 1, 12, 14, 8, 9, 20, 36, 48, 56, 60, 60, 56, 48, 36, 20, 6, 3, 2, 4, 20, 1, 21, 4, 3, 5, 11, 24, 44, 60, 72, 80, 84, 84, 80
Offset: 1

Views

Author

Rémy Sigrist, Feb 26 2018

Keywords

Comments

For any real p > 0, the rose or rhodonea curve with polar coordinates r = cos(t * p):
- is dense in the unit disk when p is irrational,
- is closed when p is rational, say p = u/v in reduced form; in that case, the number of parts inscribed in the curve is T(v, u),
- see also the illustration in Links section.

Examples

			Array T(n, k) begins:
  n\k|    1    2    3    4    5    6    7    8    9
  ---+---------------------------------------------
    1|    1    4    3    8    5   12    7   16    9
    2|    4    1   12    4   20    3   28    8   36
    3|    2   12    1   24   10    4   14   48    3
    4|    8    4   24    1   40   12   56    4   72
    5|    3   20    9   40    1   60   21   80   27
    6|   12    2    4   12   60    1   84   24   12
    7|    4   28   12   56   20   84    1  112   36
    8|   16    8   48    4   80   24  112    1  144
    9|    5   36    2   72   25   12   35  144    1
   10|   20    3   60   20    4    9  140   40  180
   11|    6   44   18   88   30  132   42  176   54
...
The following diagram shows the curve for T(2, 1) and the corresponding 4 parts:
                         |
               ########     ########
           #####      #######      #####
        ###          ###   ###          ###
      ###           ##   |   ##           ###
     ##            ##         ##            ##
    ##             #  Part #2  #             ##
   ##              ##         ##              ##
   #                ###  |  ###                #
  -#- - - Part #3  - -#######- -  Part #1 - - -#-
   #                ###  |  ###                #
   ##              ##         ##              ##
    ##             #  Part #4  #             ##
     ##            ##         ##            ##
      ###           ##   |   ##           ###
        ###          ###   ###          ###
           #####      #######      #####
               ########     ########
                         |
		

Crossrefs

Formula

T(1, k) = A022998(k).
T(n, k) = T(n/gcd(n, k), k/gcd(n, k)).
Empirically, when gcd(n, k) = 1, we have the following formulas depending on the parity of n and of k:
| k is odd | k is even
----------+--------------------------------+--------------------
n is odd | T(n, k) = k * A029578(n+1) | T(n, k) = 2 * k * n
n is even | T(n, k) = 2 * k * A029578(n+1) | N/A