A300192 Triangle read by rows: row n consists of the coefficients of the expansion of the polynomial (x^2 + 2*x + 1)^n + (x^2 - 1)*(x + 1)^n.
0, 0, 1, 0, 1, 2, 1, 0, 2, 6, 6, 2, 0, 3, 13, 22, 18, 7, 1, 0, 4, 23, 56, 75, 60, 29, 8, 1, 0, 5, 36, 115, 215, 261, 215, 121, 45, 10, 1, 0, 6, 52, 206, 495, 806, 938, 798, 496, 220, 66, 12, 1, 0, 7, 71, 336, 987, 2016, 3031, 3452, 3010, 2003, 1001, 364, 91
Offset: 0
Examples
The triangle T(n, k) begins: n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0: 0 0 1 1: 0 1 2 1 2: 0 2 6 6 2 3: 0 3 13 22 18 7 1 4: 0 4 23 56 75 60 29 8 1 5: 0 5 36 115 215 261 215 121 45 10 1 6: 0 6 52 206 495 806 938 798 496 220 66 12 1 7: 0 7 71 336 987 2016 3031 3452 3010 2003 1001 364 91 14 1
References
- M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972.
- J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996.
Links
- Paul Barry, On the Connection Coefficients of the Chebyshev-Boubaker polynomials, The Scientific World Journal, Volume 2013 (2013), Article ID 657806, 10 pages.
- Milan Janjic and B. Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013.
- A. M. Mathai and P. N. Rathie, Enumeration of almost cubic maps, Journal of Combinatorial Theory, Series B, Vol 13 (1972), 83-90.
- Franck Ramaharo, A one-variable bracket polynomial for some Turk's head knots, arXiv:1807.05256 [math.CO], 2018.
- Franck Ramaharo, A bracket polynomial for 2-tangle shadows, arXiv:2002.06672 [math.CO], 2020.
Programs
-
Maple
T := (n, k) -> binomial(2*n, k) + binomial(n, k - 2) - binomial(n, k); for n from 0 to 10 do seq(T(n, k), k = 0 .. max(2*n, n + 2)) od;
-
Maxima
T(n, k) := binomial(2*n, k) + binomial(n, k - 2) - binomial(n, k)$ a : []$ for n:0 thru 10 do a : append(a, makelist(T(n, k), k, 0, max(2*n, n + 2)))$ a;
-
PARI
row(n) = Vecrev((x^2 + 2*x + 1)^n + (x^2 - 1)*(x + 1)^n); \\ Michel Marcus, Nov 12 2022
Formula
T(n,k) = binomial(2*n,k) + binomial(n,k-2) - binomial(n,k).
T(n,k) = T(n-1,k-1)+ T(n-1,k) + A034871(n-1,k-1), with T(n,0) = T(0,1) = 0 and T(0,2) = 1
T(n,1) = A001477(n).
T(n,2) = A143689(n).
T(n,n) = A247493(n+1,n).
T(n,n+1) = n + A001791(n).
T(n,n+2) = 1 + A002694(n), n >= 2.
T(n,n+k) = binomial(2*n, n-k) = A094527(n,k), for k >= 3 and n>=k.
G.f.: 1/(1 - y*(x^2 + 2*x + 1)) + (x^2 - 1)/(1 - y*(x + 1)).