A300225 Filter sequence combining A296078(n) and A296091(n), the prime signatures of phi(n)+1 and sigma(n)-1, with a(1) = 1.
1, 2, 2, 3, 2, 2, 2, 3, 4, 2, 2, 5, 2, 2, 6, 7, 2, 3, 2, 6, 2, 3, 2, 6, 8, 2, 3, 3, 2, 6, 2, 3, 9, 2, 6, 10, 2, 2, 11, 2, 2, 3, 2, 9, 11, 2, 2, 3, 12, 13, 9, 6, 2, 3, 2, 11, 2, 2, 2, 2, 2, 3, 2, 14, 6, 15, 2, 16, 17, 11, 2, 11, 2, 2, 3, 2, 3, 6, 2, 15, 18, 5, 2, 6, 9, 2, 15, 2, 2, 6, 3, 19, 2, 3, 3, 9, 2, 20, 3, 21, 2, 15, 2, 11, 6
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
PARI
up_to = 65537; rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); } A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from Charles R Greathouse IV, Aug 17 2011 A296078(n) = A046523(1+eulerphi(n)); A296091(n) = if(1==n,n,A046523(sigma(n)-1);) Aux300225(n) = (1/2)*(2 + ((A296078(n)+A296091(n))^2) - A296078(n) - 3*A296091(n)); write_to_bfile(1,rgs_transform(vector(up_to,n,Aux300225(n))),"b300225.txt");
Comments