cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A300223 Lexicographically earliest infinite sequence such that a(i) = a(j) => A046523(i) = A046523(j) and A296091(i) = A296091(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 4, 2, 7, 2, 4, 4, 8, 2, 9, 2, 10, 4, 11, 2, 12, 13, 4, 5, 9, 2, 14, 2, 15, 4, 4, 4, 16, 2, 4, 11, 12, 2, 17, 2, 10, 9, 4, 2, 18, 19, 20, 4, 10, 2, 21, 4, 21, 4, 4, 2, 22, 2, 11, 10, 23, 4, 17, 2, 7, 11, 17, 2, 24, 2, 4, 9, 10, 11, 14, 2, 18, 25, 26, 2, 22, 4, 4, 11, 12, 2, 22, 11, 10, 4, 11, 11, 27, 2, 28, 9, 29, 2, 17, 2, 21, 14
Offset: 1

Views

Author

Antti Karttunen, Mar 01 2018

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A046523(n), A296091(n)].

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A296091(n) = if(1==n,n,A046523(sigma(n)-1));
    Aux300223(n) = (1/2)*(2 + ((A046523(n)+A296091(n))^2) - A046523(n) - 3*A296091(n));
    v300223 = rgs_transform(vector(up_to,n,Aux300223(n)));
    A300223(n) = v300223[n];

Extensions

Name changed by Antti Karttunen, May 20 2022

A300242 Filter sequence combining gcd(n,sigma(n)) and gcd(n,phi(n)), (A009194 and A009195).

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 5, 6, 1, 7, 1, 6, 8, 9, 1, 10, 1, 11, 5, 6, 1, 12, 13, 6, 14, 15, 1, 3, 1, 16, 8, 6, 1, 17, 1, 6, 5, 18, 1, 19, 1, 7, 20, 6, 1, 21, 22, 23, 8, 11, 1, 24, 13, 25, 5, 6, 1, 26, 1, 6, 14, 27, 1, 3, 1, 11, 8, 6, 1, 28, 1, 6, 13, 7, 1, 19, 1, 29, 30, 6, 1, 31, 1, 6, 8, 32, 1, 33, 34, 7, 5, 6, 35, 36, 1, 37, 20, 38, 1, 3, 1, 39, 20
Offset: 1

Views

Author

Antti Karttunen, Mar 02 2018

Keywords

Comments

Restricted growth sequence transform of P(A009194(n), A009195(n)), where P(a,b) is a two-argument form of A000027 used as a Cantor pairing function N x N -> N.

Examples

			a(15) = a(33) (= 8) because A009194(15) = A009194(33) = 3 and A009195(15) = A009195(33) = 1.
a(20) = a(52) (= 11) because A009194(20) = A009194(52) = 2 and A009195(20) = A009195(52) = 4.
		

Crossrefs

Programs

  • PARI
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A009194(n) = gcd(n, sigma(n));
    A009195(n) = gcd(n, eulerphi(n));
    Aux300242(n) = (1/2)*(2 + ((A009194(n)+A009195(n))^2) - A009194(n) - 3*A009195(n));
    write_to_bfile(1,rgs_transform(vector(65537,n,Aux300242(n))),"b300242.txt");

A300224 Filter sequence combining A046523(n) and A296078(n), prime signature of n and prime signature of phi(n)+1.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 7, 8, 2, 6, 2, 9, 4, 4, 2, 10, 11, 4, 5, 6, 2, 12, 2, 13, 14, 4, 7, 15, 2, 4, 7, 16, 2, 17, 2, 18, 9, 4, 2, 19, 3, 18, 14, 9, 2, 16, 4, 10, 4, 4, 2, 20, 2, 4, 6, 21, 7, 22, 2, 18, 23, 12, 2, 24, 2, 4, 6, 6, 4, 12, 2, 25, 26, 4, 2, 27, 14, 4, 14, 16, 2, 27, 4, 28, 4, 4, 4, 29, 2, 6, 6, 15, 2, 22, 2, 10, 12
Offset: 1

Views

Author

Antti Karttunen, Mar 01 2018

Keywords

Comments

Restricted growth sequence transform of P(A046523(n), A296078(n)), where P(a,b) is a two-argument form of A000027 used as a Cantor pairing function N x N -> N.

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A296078(n) = A046523(1+eulerphi(n));
    Aux300224(n) = (1/2)*(2 + ((A296078(n)+A046523(n))^2) - A296078(n) - 3*A046523(n));
    write_to_bfile(1,rgs_transform(vector(up_to,n,Aux300224(n))),"b300224.txt");
Showing 1-3 of 3 results.