cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A300223 Lexicographically earliest infinite sequence such that a(i) = a(j) => A046523(i) = A046523(j) and A296091(i) = A296091(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 4, 2, 7, 2, 4, 4, 8, 2, 9, 2, 10, 4, 11, 2, 12, 13, 4, 5, 9, 2, 14, 2, 15, 4, 4, 4, 16, 2, 4, 11, 12, 2, 17, 2, 10, 9, 4, 2, 18, 19, 20, 4, 10, 2, 21, 4, 21, 4, 4, 2, 22, 2, 11, 10, 23, 4, 17, 2, 7, 11, 17, 2, 24, 2, 4, 9, 10, 11, 14, 2, 18, 25, 26, 2, 22, 4, 4, 11, 12, 2, 22, 11, 10, 4, 11, 11, 27, 2, 28, 9, 29, 2, 17, 2, 21, 14
Offset: 1

Views

Author

Antti Karttunen, Mar 01 2018

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A046523(n), A296091(n)].

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A296091(n) = if(1==n,n,A046523(sigma(n)-1));
    Aux300223(n) = (1/2)*(2 + ((A046523(n)+A296091(n))^2) - A046523(n) - 3*A296091(n));
    v300223 = rgs_transform(vector(up_to,n,Aux300223(n)));
    A300223(n) = v300223[n];

Extensions

Name changed by Antti Karttunen, May 20 2022

A300232 Restricted growth sequence transform of A286152, filter combining A051953(n) and A046523(n), cototient and the prime signature of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 12, 13, 14, 2, 15, 16, 17, 18, 19, 2, 20, 2, 21, 22, 23, 24, 25, 2, 26, 27, 28, 2, 29, 2, 30, 31, 32, 2, 33, 34, 35, 36, 37, 2, 38, 27, 39, 40, 41, 2, 42, 2, 43, 44, 45, 46, 47, 2, 48, 49, 47, 2, 50, 2, 51, 52, 53, 46, 54, 2, 55, 56, 57, 2, 58, 40, 59, 60, 61, 2, 62, 36, 63, 64, 65, 66, 67, 2, 68, 69
Offset: 1

Views

Author

Antti Karttunen, Mar 01 2018

Keywords

Examples

			a(39) = a(55) (= 27) because both are nonsquare semiprimes (3*13 and 5*11), and both have cototient value 15 = 39 - phi(39) = 55 - phi(55).
		

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A051953(n) = (n - eulerphi(n));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A286152(n) = (2 + ((A051953(n)+A046523(n))^2) - A051953(n) - 3*A046523(n))/2;
    write_to_bfile(1,rgs_transform(vector(up_to,n,A286152(n))),"b300232.txt");

A300225 Filter sequence combining A296078(n) and A296091(n), the prime signatures of phi(n)+1 and sigma(n)-1, with a(1) = 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 2, 2, 3, 4, 2, 2, 5, 2, 2, 6, 7, 2, 3, 2, 6, 2, 3, 2, 6, 8, 2, 3, 3, 2, 6, 2, 3, 9, 2, 6, 10, 2, 2, 11, 2, 2, 3, 2, 9, 11, 2, 2, 3, 12, 13, 9, 6, 2, 3, 2, 11, 2, 2, 2, 2, 2, 3, 2, 14, 6, 15, 2, 16, 17, 11, 2, 11, 2, 2, 3, 2, 3, 6, 2, 15, 18, 5, 2, 6, 9, 2, 15, 2, 2, 6, 3, 19, 2, 3, 3, 9, 2, 20, 3, 21, 2, 15, 2, 11, 6
Offset: 1

Views

Author

Antti Karttunen, Mar 01 2018

Keywords

Comments

Restricted growth sequence transform of P(A296078(n), A296091(n)), where P(a,b) is a two-argument form of A000027 used as a Cantor pairing function N x N -> N.

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A296078(n) = A046523(1+eulerphi(n));
    A296091(n) = if(1==n,n,A046523(sigma(n)-1);)
    Aux300225(n) = (1/2)*(2 + ((A296078(n)+A296091(n))^2) - A296078(n) - 3*A296091(n));
    write_to_bfile(1,rgs_transform(vector(up_to,n,Aux300225(n))),"b300225.txt");
Showing 1-3 of 3 results.