cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300229 Restricted growth sequence transform of A285729, combining A032742(n) and A046523(n), the largest proper divisor and the prime signature of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 7, 10, 2, 11, 2, 12, 9, 13, 2, 14, 15, 16, 17, 18, 2, 19, 2, 20, 13, 21, 9, 22, 2, 23, 16, 24, 2, 25, 2, 26, 27, 28, 2, 29, 30, 31, 21, 32, 2, 33, 13, 34, 23, 35, 2, 36, 2, 37, 38, 39, 16, 40, 2, 41, 28, 42, 2, 43, 2, 44, 31, 45, 13, 46, 2, 47, 48, 49, 2, 50, 21, 51, 35, 52, 2, 53, 16, 54, 37, 55, 23, 56, 2, 57
Offset: 1

Views

Author

Antti Karttunen, Mar 01 2018

Keywords

Examples

			a(10) = a(15) (= 7) because both are nonsquare semiprimes (2*5 and 3*5), and when the smallest prime factor is divided out, both yield the same quotient, 5.
		

Crossrefs

Programs

  • PARI
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A032742(n) = if(1==n,n,n/vecmin(factor(n)[,1]));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A285729(n) = (1/2)*(2 + ((A032742(n)+A046523(n))^2) - A032742(n) - 3*A046523(n));
    write_to_bfile(1,rgs_transform(vector(65537,n,A285729(n))),"b300229.txt");