A300229 Restricted growth sequence transform of A285729, combining A032742(n) and A046523(n), the largest proper divisor and the prime signature of n.
1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 7, 10, 2, 11, 2, 12, 9, 13, 2, 14, 15, 16, 17, 18, 2, 19, 2, 20, 13, 21, 9, 22, 2, 23, 16, 24, 2, 25, 2, 26, 27, 28, 2, 29, 30, 31, 21, 32, 2, 33, 13, 34, 23, 35, 2, 36, 2, 37, 38, 39, 16, 40, 2, 41, 28, 42, 2, 43, 2, 44, 31, 45, 13, 46, 2, 47, 48, 49, 2, 50, 21, 51, 35, 52, 2, 53, 16, 54, 37, 55, 23, 56, 2, 57
Offset: 1
Keywords
Examples
a(10) = a(15) (= 7) because both are nonsquare semiprimes (2*5 and 3*5), and when the smallest prime factor is divided out, both yield the same quotient, 5.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
PARI
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); } A032742(n) = if(1==n,n,n/vecmin(factor(n)[,1])); A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523 A285729(n) = (1/2)*(2 + ((A032742(n)+A046523(n))^2) - A032742(n) - 3*A046523(n)); write_to_bfile(1,rgs_transform(vector(65537,n,A285729(n))),"b300229.txt");