cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A322598 a(n) is the number of unlabeled rank-3 graded lattices with 3 coatoms and n atoms.

Original entry on oeis.org

1, 3, 8, 13, 20, 29, 39, 50, 64, 78, 94, 112, 131, 151, 174, 197, 222, 249, 277, 306, 338, 370, 404, 440, 477, 515, 556, 597, 640, 685, 731, 778, 828, 878, 930, 984, 1039, 1095, 1154, 1213, 1274, 1337, 1401, 1466, 1534, 1602, 1672, 1744, 1817
Offset: 1

Views

Author

Jukka Kohonen, Dec 19 2018

Keywords

Comments

Also number of bicolored graphs, with 3 vertices in the first color class and n in the second, with no isolated vertices, and where any two vertices in one class have at most one common neighbor.

Examples

			a(2)=3: These are the three lattices.
    o          o          o
   /|\        /|\        /|\
  o o o      o o o      o o o
  |/  |      |/_/|      |/ \|
  o   o      o   o      o   o
   \ /        \ /        \ /
    o          o          o
		

Crossrefs

Third row of A300260.
Next rows are A322599, A322600.

Programs

  • GAP
    List([1..50],n->Int((3/4)*n^2+(1/3)*n+1/4)); # Muniru A Asiru, Dec 20 2018
  • Maple
    seq(floor(3/4*n^2+n/3+1/4),n=1..100); # Robert Israel, Dec 19 2018
  • Mathematica
    LinearRecurrence[{1, 1, 0, -1, -1, 1}, {1, 3, 8, 13, 20, 29}, 50] (* Jean-François Alcover, Dec 29 2018 *)
  • PARI
    Vec(x*(1 + 2*x + 4*x^2 + 2*x^3) / ((1 - x)^3*(1 + x)*(1 + x + x^2)) + O(x^50)) \\ Colin Barker, Dec 19 2018
    

Formula

a(n) = floor( (3/4)n^2 + (1/3)n + 1/4 ).
From Colin Barker, Dec 19 2018: (Start)
G.f.: x*(1 + 2*x + 4*x^2 + 2*x^3) / ((1 - x)^3*(1 + x)*(1 + x + x^2)).
a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6) for n>6.
(End)
From Robert Israel, Dec 19 2018: (Start)
a(6*m) = 27*m^2+2*m.
a(6*m+1) = 27*m^2+11*m+1.
a(6*m+2) = 27*m^2+20*m+3.
a(6*m+3) = 27*m^2+29*m+8.
a(6*m+4) = 27*m^2+38*m+13.
a(6*m+5) = 27*m^2+47*m+20.
These imply the conjectured G.f. and recursion.(End)

A322599 a(n) is the number of unlabeled rank-3 graded lattices with 4 coatoms and n atoms.

Original entry on oeis.org

1, 4, 13, 34, 68, 121, 197, 299, 432, 600, 806, 1055, 1352, 1698, 2100, 2561, 3085, 3675, 4338, 5074, 5891, 6790, 7777, 8854, 10029, 11300, 12677, 14160, 15756, 17465, 19297, 21249, 23332, 25544, 27894, 30381, 33016, 35794, 38728, 41815, 45065
Offset: 1

Views

Author

Jukka Kohonen, Dec 19 2018

Keywords

Examples

			a(2)=4: These are the four lattices.
    __o__        __o__       __o__       __o__
   / / \ \      / / \ \     / / \ \     / / \ \
  o o   o o     o o o o     o o o o     o o o o
   \_\ /_/|      \|/ \|      \|/  |     |/   \|
      o   o       o   o       o   o     o     o
       \ /         \ /         \ /       \_ _/
        o           o           o          o
		

Crossrefs

Fourth row of A300260.
Adjacent rows are A322598, A322600.

Formula

a(n) = (97/144)n^3 - (5/6)n^2 + [44/48, 47/48]n + [0, 13, 8, -45, 40, -19, 0, -5, 8, -27, 40, -37]/72. The value of the first bracket depends on whether n is even or odd. The value of the second bracket depends on whether (n mod 12) is 0, 1, 2, ..., 11.
Conjectures from Colin Barker, Dec 19 2018: (Start)
G.f.: x*(1 + 3*x + 8*x^2 + 17*x^3 + 21*x^4 + 21*x^5 + 16*x^6 + 7*x^7 + 3*x^8) / ((1 - x)^4*(1 + x)^2*(1 + x^2)*(1 + x + x^2)).
a(n) = a(n-1) + a(n-2) - 2*a(n-5) + a(n-8) + a(n-9) - a(n-10) for n>10.
(End)

A322600 a(n) is the number of unlabeled rank-3 graded lattices with 5 coatoms and n atoms.

Original entry on oeis.org

1, 5, 20, 68, 190, 441, 907, 1690, 2916, 4734, 7310, 10836, 15528, 21619, 29365, 39045, 50961, 65434, 82809, 103453, 127751, 156117, 188980, 226794, 270037, 319204, 374813, 437409, 507553, 585831, 672847, 769233, 875637, 992735, 1121218, 1261802
Offset: 1

Views

Author

Jukka Kohonen, Dec 19 2018

Keywords

Crossrefs

Fifth row of A300260.
Previous rows are A322598, A322599.

Formula

For n>=3: a(n) = (175/192)n^4 - (3079/480)n^3 + (11771/480)n^2
- [7268/160, 7273/160]n
+ [33600, 34019, 34072, 33627, 33152, 34915, 33624, 33947, 33472, 33507,
34520, 34459, 32832, 33827, 34072, 34395, 33344, 34147, 33432, 33947,
34240, 33699, 33752, 34267, 32832, 34595, 34264, 33627, 33152, 34147,
34200, 34139, 33472, 33507, 33752, 35035, 33024, 33827, 34072, 33627,
33920, 34339, 33432, 33947, 33472, 34275, 33944, 34267, 32832, 33827,
34840, 33819, 33152, 34147, 33432, 34715, 33664, 33507, 33752, 34267] / 960.
The value of the first bracket depends on whether n is even or odd. The value of the second bracket depends on whether (n mod 60) is 0, 1, 2, ..., 59.
Conjectures from Colin Barker, Dec 20 2018: (Start)
G.f.: x*(1 + 4*x + 14*x^2 + 43*x^3 + 102*x^4 + 184*x^5 + 282*x^6 + 368*x^7 + 411*x^8 + 400*x^9 + 333*x^10 + 237*x^11 + 142*x^12 + 70*x^13 + 26*x^14 + 7*x^15 + x^16) / ((1 - x)^5*(1 + x)^2*(1 + x^2)*(1 + x + x^2)*(1 + x + x^2 + x^3 + x^4)).
a(n) = a(n-1) + a(n-2) - a(n-5) - a(n-6) - a(n-7) + a(n-8) + a(n-9) + a(n-10) - a(n-13) - a(n-14) + a(n-15) for n>15.
(End)

A300221 a(n) is the number of unlabeled, graded rank-3 lattices with n elements.

Original entry on oeis.org

0, 0, 0, 1, 2, 4, 8, 18, 38, 88, 210, 528, 1396, 3946, 11896, 38644, 135790, 518645, 2160112, 9832013, 48945468, 266458643
Offset: 1

Views

Author

Jukka Kohonen, Mar 01 2018

Keywords

Comments

A graded lattice has rank 3 if its maximal chains have length 3.
They can be enumerated with a program such as that by Kohonen (2017).
Also called "two level lattices": apart from top and bottom, they have just coatoms and atoms. (Kleitman and Winston 1980)
Asymptotic upper bound: a(n) < b^(n^(3/2) + o(n^(3/2))), where b is about 1.699408. (Kleitman and Winston 1980)

Examples

			a(4)=1: The only possibility is the chain of length 3 (with 4 elements).
a(6)=4: These are the four lattices.
    o       o      o       o
    |      / \    / \     /|\
    o      o o    o o    o o o
   /|\     | |    |/|     \|/
  o o o    o o    o o      o
   \|/     \ /    \ /      |
    o       o      o       o
		

Crossrefs

Cf. A278691 (unlabeled graded lattices).

Formula

a(n) = Sum_{k=1..n-3} A300260(n-2-k, k).

Extensions

a(22) from Jukka Kohonen, Mar 03 2018
Showing 1-4 of 4 results.